
XML Notes – 10/31/03

Defined by the WWW Consortium (W3C)
Originally intended as a document markup language not a database language
Documents have tags giving extra information about sections of the document

<title> XML </title> <slide> Introduction …</slide>

Derived from SGML (Standard Generalized Markup Language), but simpler to use than
SGML
Extensible, unlike HTML – what do we mean by this?

Users can add new tags, and separately specify how the tag should be handled for display

Goal was (is?) to replace HTML as the language for publishing documents on the Web

XML consists of tags and text

Tags come in pairs <date> ...</date>

They must be properly nested

 <date> <day> ... </day> ... </date> --- good
 <date> <day> ... </date>... </day> --- bad

 (You can’t do <i> </i> ... as in HTML)

Nesting tags can be used to express various structures. E.g. A tuple (record) :

<person>
 <name> Malcolm Atchison </name>
 <tel> (215) 898 4321 </tel>
 <email> mp@dcs.gla.ac.sc </email>
</person>

•We can represent a list by using the same
 tag repeatedly:

<addresses>
 <person> ... </person>
 <person> ... </person>
 <person> ... </person>
 ...
</addresses>

XML provides a hierarchical data model

- two main structuring concepts
o elements
o attributes (not same as db terminology)

element – segment of an XML document between an opening and a corresponding
closing tag is called an element.

<person>
 <name> Malcolm Atchison </name>
 <tel> (215) 898 4321 </tel>
 <tel> (215) 898 4321 </tel>
 <email> mp@dcs.gla.ac.sc </email>
 </person>

- complex elements – constructed from other elements hierarchically
- (show Toy example XML)

- attribute – provide additional information that describes elements

An (opening) tag may contain attributes. These are typically used to describe the content
of an element

 <entry>
 <word language = “en”> cheese </word>
 <word language = “fr”> fromage </word>
 <word language = “ro”> branza </word>
 <meaning> A food made … </meaning>
 </entry>

Another common use for attributes is to express dimension or type

<picture>
 <height dim= “cm”> 2400 </height>
 <width dim= “in”> 96 </width>
 <data encoding = “gif” compression = “zip”>
 M05-.+C$@02!G96YE<FEC ...
 </data>
</picture>

A document that obeys the “nested tags” rule and does not repeat an attribute within a tag
is said to be well-formed .

Document Type Descriptors (DTDs) impose structure on an XML document.

• The type of an XML document can be specified using a DTD
• DTD constrains structure of XML data

o What elements can occur
o What attributes can/must an element have
o What subelements can/must occur inside each element, and how many

times.
• DTD does not constrain data types

o All values represented as strings in XML
• DTD syntax

o <!ELEMENT element (subelements-specification) >
o <!ATTLIST element (attributes) >

There is some relationship between a DTD and a schema, but it is not close – there is still
a need for additional “typing” systems that schemas have and DTDs do not.

The DTD is a syntactic specification.

(Show address book example – setup for DTD example)

For Address book DTD example:

name to specify a name element
greet? to specify an optional (0 or 1) greet elements
name,greet? to specify a name followed by an optional greet
addr* to specify 0 or more address lines
tel | fax a tel or a fax element
(tel | fax)* 0 or more repeats of tel or fax
email* 0 or more email elements

So the whole structure of a person entry is specified by

name, greet?, addr*, (tel | fax)*, email*

This is known as a regular expression. Why is it important?

Summary of XML regular expressions

A The tag A occurs
e1,e2 The expression e1 followed by e2
e* 0 or more occurrences of e
e? Optional -- 0 or 1 occurrences
e+ 1 or more occurrences
e1 | e2 either e1 or e2

(e) grouping

(Show DTD example slides)

Specifying attributes in the DTD

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 dimension CDATA #REQUIRED
 accuracy CDATA #IMPLIED >

The dimension attribute is required; the accuracy attribute is optional.
CDATA is the “type” of the attribute -- it means string.

ID and IDREF attributes:

ID – defines a unique attribute
IDREF – refers to an ID from another element

- similar to primary keys and foreign keys

Consistency of ID and IDREF attribute values

• If an attribute is declared as ID
o the associated values must all be distinct (no confusion)

• If an attribute is declared as IDREF
o the associated value must exist as the value of some ID attribute (no

dangling “pointers”)
• Similarly for all the values of an IDREFS attribute
• ID and IDREF attributes are not typed

Connecting the document with its DTD

In line: defined right in the xml document itself – not very flexible or reusable
<?xml version="1.0"?> <!DOCTYPE db [<!ELEMENT ...> …]> <db> ... </db>

Another file: local file or on reachable file system
 <!DOCTYPE db SYSTEM "schema.dtd">

A URL:
 <!DOCTYPE db SYSTEM
 "http://www.schemaauthority.com/schema.dtd">

DTDs v.s Schemas (or Types)

• By database (or programming language) standards DTDs are rather weak
specifications.

o Only one base type -- PCDATA
o No useful “abstractions” e.g., sets
o IDREFs are untyped. You point to something, but you don’t know what!
o No constraints e.g., child is inverse of parent
o No methods
o Tag definitions are global

• Some of the XML extensions impose something like a schema or type on an XML
document.

XXMMLL SScchheemmaa

• XML Schema is a more sophisticated schema language, which addresses the
drawbacks of DTDs. Supports

o Typing of values
� E.g. integer, string, etc
� Also, constraints on min/max values

o User defined types
o Is itself specified in XML syntax, unlike DTDs

� More standard representation, but verbose
o Is integrated with namespaces
o Many more features

� List types, uniqueness and foreign key constraints, inheritance ..
• BUT: significantly more complicated than DTDs, not yet widely used.

• xsd – XML Schema Definition

• xmlns – xml namespace

(show schema example slides)

Extracting XML Documents from Relational Databases into XML Schema

- XML uses hierarchical tree model to represent documents
- It is natural to us ER model corresponding to relational DB as a starting point

- example: Toy database (recall the ER diagram – show on slide)

o extract a document hierarchy from the ER diagram
o decide which relation to choose as root of the tree (there may be several

options)
o let’s choose toy: (see hierarchical diagram on slide)

o In diagram – consequence of choosing Toy as root – manuf info will have

to be stored for each toy in the database

