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Unification and Lifting

Craig Eminger

∀ x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

Propositional approach = not efficient.

Ex.) 

The query is Evil(x).

Apply Universal Instantiation and we get:

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)  

By applying a complete propositional algorithm (chapter 7), 
we can determine Evil(John).
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∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)
Siblings(Peter, Sharon)

What happens when we add Siblings(Peter, Sharon) to 
our knowledge base?

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)
Siblings(Peter, Sharon)

2 new values in our vocabulary =  “Peter” and “Sharon”.

Apply Universal Instantiation and we get:

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Peter) ∧ Greedy(Peter) ⇒ Evil(Peter)
King(Sharon) ∧ Greedy(Sharon) ⇒ Evil(Sharon)  

These sentences are not all necessary in our KB.
We can teach the computer to make better inferences.
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We want an X where X is a King and X is Greedy (then X is 
evil).

Ideally, we want  
θ

= {substitution set}.  

i.e.) 
θ

= {x/ John}

∀y Greedy(y)  = “for all values y, y is greedy”

Or basically, “everyone is greedy.”

Now our 
θ

= {x/ John, y/ John}, so we can inferEvil(x)

The inference rule that encapsulates this process called 
Generalized Modus Ponens.

Generalized Modus Ponens:

For atomic sentences pi, pi', and q, where there is a 
substitution 

θ
such that SUθ

, pi) = SUBST(
θ
, pi'), for all i,

p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒ q )


SUBST(
θ
, q)

N + 1 premises = N atomic sentences + one implication.
Applying SUBST(

θ
, q) yields the conclusion we seek.
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p1' = King(John) p2' = Greedy(y)

p1 = King(x) p2 = Greedy(x)θ
= {x / John, y/ John} q = Evil(x)

SUBST(
θ
, q) is Evil(John)

Generalized Modus Ponens = lifted Modus Ponens

Lifted - transformed from:

Propositional Logic → First-order Logic

(Note: Backwards chaining, forwards chaining, and resolution 
algorithms also have lifted forms you will see later)

How do we determine substitution 
θ
? → unification.

Unification = process we use to find substitutions that make 
different logical expressions look identical

Algorithm: UNIFY(p, q) = θ where SUBST(θ , p) = SUBST(θ , q)θ
is our unifier value (if one exists). 

Ex.) “Who does John know?”

UNIFY(Knows(John, x), Knows(John, Jane) ) =  {x/ Jane}.

UNIFY(Knows(John, x), Knows(y, Bill) ) = {x/Bill, y/ John}.

UNIFY(Knows(John, x), Knows(y, Mother( y ) ) ) = {x/Bill, y/ John}.
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Can anyone see the problem with the next example?

UNIFY(Knows(John, x), Knows(x, Elizabeth) ) = FAIL.

What can we do to fix it?

Both use the same variable, X.  X can’t equal both John and 
Elizabeth.

The solution:  change the variable X to Y (or any other value) 
in Knows(X, Elizabeth)

Knows(X, Elizabeth) → Knows(Y, Elizabeth) 

Still means the same.

This is called standardizing apart.
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Another problem = sometimes possible for > 1 unifier returned:

UNIFY(Knows(John, x), Knows(y, z) ) =  ???

This can return two possible unifications:

{ y/ John, x/ z} which means Knows(John, z)

OR

{ y/ John, x/ John, z/ John} which means Knows(John, John).

For each unifiable pair of expressions there is a single most 
general unifier (MGU). (algorithm on page 278)

Occur check: makes sure same variable isn’t used twice
increases time complexity

Storage and Retrieval:

What we do Function Primative

Store info in KB TELL STORE

Get info from KB ASK FETCH

Easy way to implement: 

Store all sentences in a long list, browse list one sentence at a time 
with UNIFY on an ASK query.

Easy way = inefficient.

Any ideas how to improve this?
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Problem: On a FETCH, you would compare your query 
sentence with sentences that have no chance of unification.

i.e.) Knows(John, x)   vs. Brother(Richard, John) 

Not compatible.

Solution: categorize sentences w/ indexing.

Predicate indexing - one method of such

• store facts in “buckets”
• buckets stored in hash table
• accessed by index keys
• best w/ lots of predicate symbols & few clauses for each

More clauses for symbols  → Multiple index keys

Ex.) Employs(nameOfCompany, nameOfEmployee)

Given  Employs(AIMA.org, Richard), can answer:

Employs(AIMA.org, Richard) Does AIMA.org employ Richard?
Employs(x, Richard) Who employs Richard?
Employs(AIMA.org, y) Whom does AIMA.org employ?
Employs(x, y) Who employs whom?

We can arrange this into a subsumption lattice.

(the lattice for this example is shown on page 280)
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A subsumption lattice has the following properties:

•child of any node obtained from its parents by one substitution

•the “highest” common descendant of any two nodes is the result of 
applying their most general unifier

•predicate with n arguments contains O(2n) nodes (in our example, 
we have two arguments, so our lattice has four nodes)

•repeated constants = slightly different lattice [see Lattice b]

Adding function symbols:

•creates new lattice structures

•lattice gains in complexity (size increases exponentially)

•indexing benefit lost by a > cost for storing/maintaining indices


