Unification and Lifting

Craig Eminger

Propositional approach = not efficient.

Ex.) 0 x King(x) 0 Greedyx) = Evil(x)
King(John)
GreedyJohn)
Brother(Richard, Johi

The query i€Vil(x).

Apply Universal Instantiation and we get:

King(John) [0 GreedyJohn) = Evil(John)
King(Richard [0 GreedyRichard = Evil(Richard

By applying a complete propositional algorithm (chapter 7),
we can determinEvil(John).

What happens when we a8iblings(Peter, Sharon) to
our knowledge base?

[x King(x) 0 Greedyx) = EVil(X)
King(John)

GreedyJohn

Brother(Richard, Johi
Siblings(Peter, Sharon)

x King(x) 00 Greedyx) = Evil(x)
King(John)

GreedyJohn

Brother(Richard, Johi
Siblings(Peter, Sharon)

2 new values in our vocabulary = “Peter” and “Sharon”.

Apply Universal Instantiation and we get:

King(John) [0 GreedyJohn) = Evil(John
King(Richard [0 GreedyRichard = Evil(Richard
King(Pete) [0 GreedyPete) = Evil(Petel)
King(Sharor) [0 GreedySharor) = Evil(Sharor)

These sentences are not all necessary in our KB.
We can teach the computer to make better inferences.

We want an X where X is a King and X is Greedy (then X is
evil).

Ideally, we want6 = {substitution set}.
i.e.)6 = {x/ Johr}

Oy Greedyy) = “for all valuesy, y is greedy”

Or basically, “everyone is greedy.”

Now our6 = {x/ John, y/ Johj so we can infeEvil(x)

The inference rule that encapsulates this process called
Generalized M odus Ponens.

Generalized M odus Ponens:

For atomic sentencegs p,', andg, where there is a
substitutiord such that SU
0, p) = SUBSTY, p,'), for alli,

PP Py (P Op, O Op,=q)
00000000000000000

SUBST,)

N + 1 premises = N atomic sentences + one implication.
Applying SUBST, q) yields the conclusion we seek.

P, = King(John P, = Greedyy)
[N = King(x) P, = Greedyx)
0 = {x/John,y/Johnh q = Evil(x)

SUBST@, q) is Evil(John)

Generalized Modus Ponendifted Modus Ponens
Lifted - transformed from:

Propositional Logic- First-order Logic

(Note: Backwards chaining, forwards chaining, and resolution
algorithms also have lifted forms you will see later)

How do we determine substitutio” — unification.

Unification = process we use to find substitutions that make
different logical expressions look identical

Algorithm: UNIFY(p, q) =6 where SUBSTY, p) = SUBST, q)

0 is ourunifier value (if one exists).

Ex.) “Who does John know?”

UNIFY(KnowgJohn, 3, KnowgJohn, Jang) = {x/ Jang.
UNIFY(KnowgJohn, 3, Knowsgy, Bill)) = {x/Bill, y/ Joh#}.
UNIFY(KnowgJohn, 3, Knowgy, Mothe(y))) = {x/Bill, y/ Joh}.

Can anyone see the problem with the next example?
UNIFY(KnowgJohn, 3, Knowgx, Elizabetl)) = FAIL.

What can we do to fix it?

Both use the same variable, X. X can’t equal both John and
Elizabeth.

The solution: change the variable X to Y (or any other value)
in KnowgX, Elizabeth

KnowgX, Elizabeth — KnowgY, Elizabeth

Still means the same.

This is calledstandardizing apart.

Another problem = sometimes possible for > 1 unifier returned:
UNIFY(KnowgJohn, 3, Knowsgy, 2)) = ???

This can return two possible unifications:

{y/ John, x/ gwhich meanKnowgJohn, 2

OR

{y/ John, x/ John, z/ Johwhich mean¥KnowgJohn, Johih

For each unifiable pair of expressions there is a simgk
general unifier (MGU). (algorithm on page 278)

Occur check: makes sure same variable isn’t used twice
increases time complexity

Storage and Retrieval:

What we do Function Primative
Store info in KB TELL STORE
Get info from KB ASK FETCH

Easy way to implement:

Store all sentences in a long list, browse list one sentence at a tir
with UNIFY on an ASK query.

Easy way = inefficient.

Any ideas how to improve this?

Problem: On a FETCH, you would compare your query
sentence with sentences that have no chance of unification.

i.e.) KnowgJohn, ¥ vs.BrotherRichard, Johih
Not compatible.

Solution: categorize sentences imbexing.

Predicate indexing - one method of such

* store facts in “buckets”

* buckets stored in hash table

» accessed by index keys

* best w/ lots of predicate symbols & few clauses for each

More clauses for symbols, Multiple index keys

EX.) Employ$nameOfCompany, nameOfEmployee

Given Employ$AIMA.org, Richard, can answer:

Employ$AIMA.org, Richard Does AIMA.org employ Richard?

Employ$x, Richard Who employs Richard?
Employ¢AIMA.org, y) Whom does AIMA.org employ?
Employ$x, y) Who employs whom?

We can arrange this intosabsumption lattice.

(the lattice for this example is shown on page 280)

A subsumption lattice has the following properties:
«child of any node obtained from its parents by one substitution

the “highest” common descendant of any two nodes is the result
applying their most general unifier

spredicate withn arguments contains Oj2nodes (in our example,
we have two arguments, so our lattice has four nodes)

srepeated constants = slightly different latfisee L attice b]

Adding function symbols:
screates new lattice structures
elattice gains in complexity (size increases exmobiadly)

sindexing benefit lost by a > cost for storing/maining indices

of

