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Making Complex 
Decisions

Value Iteration and Policy Iteration

By Jayna Leone

OVERVIEW

� How to calculate an optimal policy π*
using value iteration and policy iteration

� Advantages/Disadvantages of each 
algorithm
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UTILITIES OF STATES

� Calculate the utility of each state – or the 
expected utility of the state sequences that 
might follow it*

� Therefore, the sequence of following states 
depends on the policy that is executed

� Start by defining utility Uπ (s) with respect to 
policy π.

� Utility state is the expected sum of discounted 
rewards if the agent executes an optimal 
policy

� Relationship between the utility of 
current state s and utility of its 
neighbors

� U(s) is immediate reward for that state 
plus expected discounted utility of the 
next state

� Defined by the Bellman equation*
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U(1,1) = -0.04 + γ max{ 0.8U(1,2) + 0.1U(2,1) +0.1U(1,1),
0.9U(1,1) + 0.1U(1,2),
0.9U(1,1) + 0.1U(2,1),
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)}

VALUE ITERATION

� Bellman equation is basis of value 
iteration algorithm for solving MDPs

� n states, n equations, n unknowns per 
equation

� NOT linear equations because “max” 
operator not linear

� How do we solve these ?
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� Solve with value iteration
– Start with arbitrary values for utilities of the 

states
– Calculate the right-hand side of equation
– Plug into left-hand side of equation –

updating the utility of each state from the 
utilities of neighbors

– Repeat until reach equilibrium

� Iterations are called Bellman updates*
� Propagates information thru the states 

space by means of local updates

CONVERGENCE

� Contraction: function of one argument 
that, when applied to 2 different inputs, 
produces 2 output values that are 
“closer together” by at least some 
constant amount

� Properties: 1 fixed point, value of output 
gets closer to fixed point and reaches it 
at its limit
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� Apply convergence idea to Bellman 
update*

� Contraction by the factor of γ
� Error is reduced by factor of γ each 

iteration and rate of convergence = γ

� When do you stop iterating?

– Know how much error is reduced, and at 
what rate iterations converge

– Know that utilities of states are bounded by 
plus/minus Rmax/(1-γ )

– Maximum initial error is ||U0-U|| <= 
2Rmax/(1- γ)

– Require γN * 2 Rmax /(1- γ) <= 
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function VALUE-ITERATION(mdp, ε ) returns a utility 
function
inputs: mdp, an MDP with states S, transition model 

T, reward function R, discount γε the maximum error allowed in the utility of any 
state

local variables U, U’, vectors of utilities for states S, 
initially zero
δ , the maximum change in the utility of any state 
in an iteration

repeat
U<-U’; δ <- 0
for each state s in S do

Bellman update equation
if |U’[s] – U[s]| > δ then δ <- |U’[s] – U[s]| 

until δ < ε (1- γ)/ γ
return U

� Implications
– N grows rapidly as γ approaches 1 –

affecting run-time
– The smaller γ, the faster the convergence –

gives agent short horizon

� Overall
– MEU policy obtained by calculating Ui

where i is # of iterations become optimal 
long before Ui has converged

– No policy loss
– Possible to get an optimal policy even 

when utility function estimate is inaccurate!
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POLICY ITERATION

� Alternative way to find optimal policies
� Based on idea that if one action is 

clearly better than all others, then the 
exact magnitude of the utilities on the 
states involved do not need to be 
precise

� Beginning with some policy π0 :
– POLICY EVALUATION

• given a policy πi , calculate Ui = Uπ , the utility 
of each state if π were to be executed 

– POLICY IMPROVEMENT
• calculate a new MEU policy πi+1 using one-step 

look-ahead based on Ui

� Terminate when policy improvement 
yields no change in the utilities

� Only finite # of policies for a finite space 
– must terminate – yields optimal policy
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function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, transition 
modem T
local variables: U, U’, vectors of utilities for states in 
S, initially 0
π , a policy vector indexed by state, initially random

repeat
U <-POLICY-EVALUATION(π , U, mdp)
unchanged <- true
for each state s in S do

if MEU > current then
current <-MEU

until unchanged?
return π

� Easier to solve Bellman equations
– Action in each state is fixed by the policy

– At ith iteration, policy πi specifies action in 
πi (s) in state s

– Simplifies Bellman equation relating utility 
of s to its neighbors

– Produces LINEAR equations because the 
“max” operator is removed

– Efficient in small state spaces
– Solved in O(n3)
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� Modified Policy Iteration
– Used in large state spaces
– Not necessary to do EXACT policy 

evaluation
– Perform some simplified iterative steps
– More efficient

� Asynchronous Policy Iteration
– Value and policy iteration require updating 

the utility of policy for all states at once
– This only updates any subset of states
– Given certain conditions on initial policy 

and utility function, guaranteed to converge 
to an optimal policy

Questions?


