

Making Complex Decisions

Value Iteration and Policy Iteration

By Jayna Leone

OVERVIEW

- How to calculate an optimal policy π^* using value iteration and policy iteration
- Advantages/Disadvantages of each algorithm

UTILITIES OF STATES

- Calculate the utility of each state – or the expected utility of the state sequences that might follow it*
- Therefore, the sequence of following states depends on the policy that is executed
- Start by defining utility $U^\pi(s)$ with respect to policy π .
- Utility state is the expected sum of discounted rewards if the agent executes an optimal policy

- Relationship between the utility of current state s and utility of its neighbors
- $U(s)$ is immediate reward for that state plus expected discounted utility of the next state
- Defined by the Bellman equation*

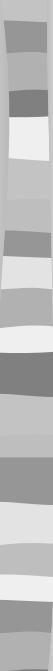
$$U(1,1) = -0.04 + \gamma \max\{ 0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), \\ 0.9U(1,1) + 0.1U(1,2), \\ 0.9U(1,1) + 0.1U(2,1), \\ 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1) \}$$

VALUE ITERATION

- Bellman equation is basis of value iteration algorithm for solving MDPs
- n states, n equations, n unknowns per equation
- NOT linear equations because “max” operator not linear
- How do we solve these ?

- Solve with value iteration
 - Start with arbitrary values for utilities of the states
 - Calculate the right-hand side of equation
 - Plug into left-hand side of equation – updating the utility of each state from the utilities of neighbors
 - Repeat until reach equilibrium
- Iterations are called Bellman updates*
- Propagates information thru the states space by means of local updates

CONVERGENCE



- Contraction: function of one argument that, when applied to 2 different inputs, produces 2 output values that are “closer together” by at least some constant amount
- Properties: 1 fixed point, value of output gets closer to fixed point and reaches it at its limit

- Apply convergence idea to Bellman update*
- Contraction by the factor of γ
- Error is reduced by factor of γ each iteration and rate of convergence = γ

- When do you stop iterating?
 - Know how much error is reduced, and at what rate iterations converge
 - Know that utilities of states are bounded by plus/minus $R_{\max}/(1-\gamma)$
 - Maximum initial error is $||U_0 - U|| \leq 2R_{\max}/(1-\gamma)$
 - Require $\gamma^N * 2 R_{\max} / (1-\gamma) \leq \epsilon$


```

function VALUE-ITERATION(mdp,ε) returns a utility
  function
    inputs: mdp, an MDP with states S, transition model
      T, reward function R, discount  $\gamma$ 
       $\epsilon$  the maximum error allowed in the utility of any
      state
    local variables U, U', vectors of utilities for states S,
      initially zero
       $\delta$ , the maximum change in the utility of any state
      in an iteration
    repeat
      U $\leftarrow$ U';  $\delta \leftarrow 0$ 
      for each state s in S do
        Bellman update equation
        if  $|U'[s] - U[s]| > \delta$  then  $\delta \leftarrow |U'[s] - U[s]|$ 
      until  $\delta < \epsilon(1 - \gamma) / \gamma$ 
    return U
  
```


- Implications
 - N grows rapidly as γ approaches 1 – affecting run-time
 - The smaller γ , the faster the convergence – gives agent short horizon
- Overall
 - MEU policy obtained by calculating U_i where i is # of iterations become optimal long before U_i has converged
 - No policy loss
 - Possible to get an optimal policy even when utility function estimate is inaccurate!

POLICY ITERATION

- Alternative way to find optimal policies
- Based on idea that if one action is clearly better than all others, then the exact magnitude of the utilities on the states involved do not need to be precise

- Beginning with some policy π_0 :
 - POLICY EVALUATION
 - given a policy π_i , calculate $U_i = U\pi$, the utility of each state if π were to be executed
 - POLICY IMPROVEMENT
 - calculate a new MEU policy π_{i+1} using one-step look-ahead based on U_i
- Terminate when policy improvement yields no change in the utilities
- Only finite # of policies for a finite space
 - must terminate – yields optimal policy


```

function POLICY-ITERATION(mdp) returns a policy
  inputs: mdp, an MDP with states S, transition
  model T
  local variables: U, U', vectors of utilities for states in
  S, initially 0
   $\pi$ , a policy vector indexed by state, initially random

  repeat
    U <- POLICY-EVALUATION( $\pi$  , U, mdp)
    unchanged <- true
    for each state s in S do
      if MEU > current then
        current <- MEU
    until unchanged?
  return  $\pi$ 

```


- Easier to solve Bellman equations
 - Action in each state is fixed by the policy
 - At *i*th iteration, policy π_i specifies action in $\pi_i(s)$ in state *s*
 - Simplifies Bellman equation relating utility of *s* to its neighbors
 - Produces LINEAR equations because the “max” operator is removed
 - Efficient in small state spaces
 - Solved in $O(n^3)$

- **Modified Policy Iteration**
 - Used in large state spaces
 - Not necessary to do EXACT policy evaluation
 - Perform some simplified iterative steps
 - More efficient
- **Asynchronous Policy Iteration**
 - Value and policy iteration require updating the utility of policy for all states at once
 - This only updates any subset of states
 - Given certain conditions on initial policy and utility function, guaranteed to converge to an optimal policy

Questions?