Making Complex
Decisions
| O

Value Iteration and Policy Iteration

By Jayna Leone

= OVERVIEW

m How to calculate an optimal policy 1t
using value iteration and policy iteration

m Advantages/Disadvantages of each
algorithm

= UTILITIES OF STATES

m Calculate the utility of each state — or the
expected utility of the state sequences that
might follow it*

m Therefore, the sequence of following states

- depends on the policy that is executed

m Start by defining utility U™ (s) with respect to
policy Tt

m Utility state is the expected sum of discounted
rewards if the agent executes an optimal

policy

mil Relationship between the utility of

current state s and utility of its
neighbors

m U(s) is immediate reward for that state
plus expected discounted utility of the
B hext state

m Defined by the Bellman equation*

U(1,1) = -0.04 + ymax{ 0.8U(1,2) + 0.1U(2,1) +0.1U(1,1),
0.9U(1,1) + 0.1U(1,2),
0.9U(1,1) + 0.1U(2,1),
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)}

= VALUEITERATION

m Bellman equation is basis of value
iteration algorithm for solving MDPs

m N states, n equations, n unknowns per
(| equation

m NOT linear equations because “max”
operator not linear

m How do we solve these ?

m Solve with value iteration

— Start with arbitrary values for utilities of the
states

— Calculate the right-hand side of equation

— Plug into left-hand side of equation —
updating the utility of each state from the
utilities of neighbors

— Repeat until reach equilibrium
m |[terations are called Bellman updates*

m Propagates information thru the states
space by means of local updates

CONVERGENCE

m Contraction: function of one argument
that, when applied to 2 different inputs,
produces 2 output values that are
“closer together” by at least some
constant amount

m Properties: 1 fixed point, value of output
gets closer to fixed point and reaches it
at its limit

m Apply convergence idea to Bellman
update*

m Contraction by the factor of y

m Error is reduced by factor of y each
iteration and rate of convergence =y

m When do you stop iterating?

— Know how much error is reduced, and at
what rate iterations converge

— Know that utilities of states are bounded by
plus/minus R,,../(1-Y)

— Maximum initial error is ||UO-U|| <=
2Rmax/(1' y)

—Require W*2 R, /(1-y) <= ¢

function VALUE-ITERATION(mdp,€) returns a utility
function

inputs: mdp, an MDP with states S, transition model
T, reward function R, discount y

€ the maximum error allowed in the utility of any
state

local variables U, U’, vectors of utilities for states S,
initially zero
0, the maximum change in the utility of any state
in an iteration
repeat
U<-U’; 0 <-0
for each state sin S do
Bellman update equation
if [U'[s] — U[s]| > dthen & <- |U’[s] — U[s]|
until d<g(1-y)/y
return U

m Implications

— N grows rapidly as y approaches 1 —
affecting run-time

— The smaller vy, the faster the convergence —
gives agent short horizon

m Overall

— MEU policy obtained by calculating U,
where i is # of iterations become optimal
long before U, has converged

— No policy loss

— Possible to get an optimal policy even
when utility function estimate is inaccurate!

= POLICY ITERATION

m Alternative way to find optimal policies

m Based on idea that if one action is
clearly better than all others, then the
BN exact magnitude of the utilities on the
states involved do not need to be
precise

m Beginning with some policy T, :
— POLICY EVALUATION

* given a policy 1t , calculate U; = Urt, the utility
of each state if mwere to be executed

— POLICY IMPROVEMENT

« calculate a new MEU policy 1t,, using one-step
. look-ahead based on U,

m Terminate when policy improvement
yields no change in the utilities

m Only finite # of policies for a finite space
— must terminate — yields optimal policy

function POLICY-ITERATION(mdp) returns a policy

m inputs: mdp, an MDP with states S, transition
modem T
local variables: U, U’, vectors of utilities for states in
S, initially O
1T, a policy vector indexed by state, initially random

repeat
B U <-POLICY-EVALUATION(mt, U, mdp)
unchanged <- true
for each state sin S do
if MEU > current then
current <-MEU
until unchanged?
return Tt

m Easier to solve Bellman equations
— Action in each state is fixed by the policy
— At ith iteration, policy T specifies action in
Tt (S) in state s
— Simplifies Bellman equation relating utility
of s to its neighbors

. — Produces LINEAR equations because the
“max” operator is removed

— Efficient in small state spaces
— Solved in O(n3)

m Modified Policy Iteration
. — Used in large state spaces

— Not necessary to do EXACT policy
evaluation

— Perform some simplified iterative steps
— More efficient

m Asynchronous Policy Iteration

— Value and policy iteration require updating
the utility of policy for all states at once

— This only updates any subset of states

— Given certain conditions on initial policy
and utility function, guaranteed to converge
to an optimal policy

Questions?

