
1

Real-Time Scheduling

Priority-driven scheduling of
periodic tasks

Outline

• Assumptions

• Scheduling Algorithms

• Schedulable Utilization and Optimality

• Schedulability Tests

2

Assumptions

• Independent periodic tasks

• No aperiodic or sporadic tasks

• Priority-driven scheduling

• Preemptibility of CPU

• Scheduling decision made when job is
released or completed

• Static / hard real-time / uniprocessor
– results can be used in more general systems

Scheduling Algorithms

• Priority-driven
– released and ready jobs in queue in

nondecreasing priority order in job queue

– scheduling decision made whenever job is
released

• Algorithms differ in how prios are assigned

3

Fixed vs. Dynamic Priority

• Two categories of priority assignment

• Fixed:
– assigns same prio to all jobs in each task

– prio does not change (fixed)

– Ex: rate-monotonic

• Dynamic:
– may assign different prios to different jobs in a task

– prios can change with time

– Ex: earliest-deadline first

Fixed Priority Scheduling

• Rate-monotonic (RM)
– shorter period = higher priority

– Ex: T1 = (2, 0.9); T2 = (5, 2.3)

0 2 4 8 106

T1

T2

4

Fixed Priority Scheduling
• Deadline monotonic (DM)

– assigns prios according to relative deadlines

– shorter relative deadline = higher prio
– Ex: T1=(50, 50, 25, 100); T2=(0, 62.5, 10, 20);

T3=(0, 125, 25, 50)

T1

T2

T3

50 100 150 200 250

62.5 125 187.5 250

125 250

Dynamic Priority Assignment
• Earliest deadline first (EDF)

– assigns prio to jobs in tasks by relative deadline

– relative prios of tasks change as new jobs are
released and completed

• Least slack time (LST)
– slack = d - t - x

• d = deadline
• t = time at which slack is computed
• x = execution of remaining portion

– scheduler checks slack whenever new job is
released

5

Dynamic Priority Assignment

• Earliest Deadline First (EDF)
– closest deadline = highest priority

– Ex: T1 = (2, 0.9); T2 = (5, 2.3)

0 2 4 8 106

T1

T2

Schedulable Utilization

• Def: A scheduling algorithm can feasibly
schedule any set of periodic tasks on a processor if
the total utilization of the tasks is equal to or less
than the schedulable utilization (SU) of the
algorithm.

• An algorithm with SU = 1 is optimal.

• If task system has total utilization > 1, not feasibly
schedulable

6

Optimality

• Thm: Both EDF and LST algorithms are
optimal in the uni-processor case.

• Proof: follows from the fact that a schedule
produced by any third algorithm can always
be transformed to either EDF or LST by
appropriate pairwise swappings of tasks.

Optimality

• Rate-Monotonic
– Thm: The RM algorithm is optimal among all fixed

priority algorithms whenever the relative deadlines of
the tasks are proportional to their periods.

– Proof: based on the idea that given a feasible test of
tasks, NOT scheduled using RM, it can be transformed
into a RM schedule by switching order, without missing
any deadlines

7

Optimality

• Deadline-monotonic
– Thm. 6-4: A system of independent, preemptable

periodic tasks that are in phase and have relative
deadlines equal to or less than their respective periods
can be feasibly scheduled on one processor according
to the DM algorithm whenever it can be feasibly
scheduled according to any fixed priority algorithm.

– Proof: Same idea as RM proof.

Schedulable Utilization of EDF

• The schedulable utilization of EDF UEDF(n)
for n independent, preemptible periodic
tasks with relative deadlines equal to or
larger than their periods is equal to one. (see
proof in Liu text)

• Same for LST

8

Schedulability Test for EDF

() 1
,min1

≤∑
=

n

k kk

k

pD
e

e= execution time;D = relative deadlinep = period

• If condition is satisfied - set of tasks is schedulable by
EDF

• If condition is not satisfied:
• If Dk >= p k for all k=1 to n

• reduces to U<=1 - necessary and sufficient condition for
schedulability

• If Dk < pk for some k
• only sufficient condtion
• system may be schedulable

Schedulable Utilization of RM and DM

• Sufficient schedulability test for RM and DM

• Thm: A system of n independent, preemptible
periodic tasks with relative deadlines equal to their
periods, can be feasibly scheduled on a single
processor according to the RM algorithm if:

U(n) <= URM(n)=n(21/n-1)

• No information if U(n) > URM(n)
– must use time-demand analysis in this case

9

Schedulability Tests for RM and DM

– Check schedulability of one task Ti at a time
• test if response time of all of its jobs are <= Di

– A critical instantof a task Ti is a time instant
which is such that:

• the job in Ti released at the instant has the max.
response time of all jobs in Ti, if the response time
of every job in Ti is <= Di

• response time of the job released at the instant is >Di

if the response times of some jobs in Ti exceed Di

– Wi = max response time of jobs in Ti

Schedulability Tests for RM and DM

– Thm 6-5: In a fixed priority system where every job
completes before the next job in the same task is
released, a critical instant of an task Ti occurs when on
of its jobs Ji,c is released at the same time with a job of
every higher priority task.

– Proof: see Liu textbook
• Wi = smallest value of t that satisfies the following:

∑
−

=








+=

1

1

i

k
k

k
i e

p

t
et

10

Schedulability Tests for RM and DM

• Time-Demand Analysis
– Compute total demand for processor time by a

job released at a critical instant and by all the
higher priority tasks as a function of time from
the critical instant

– Then check if this demand can be met before
the deadline of the job

Schedulability Tests for RM and DM

• Time -Demand Analysis
– Consider one task at a time starting with T1

(highest priority) in decreasing prio order

– For job Ti, let time t0 be a critical instant
• at time t0+t, t>=0 , total time demand (wi(t)) of Ti

and all higher prio jobs released in [t0,t] is:

∑
−

=
≤<








+=

1

1

0)(
i

k
ik

k
ii ptfore

p

t
etw

11

Schedulability Tests for RM and DM

• Time-Demand Analysis
– Ti can meet its deadline t0+D i if at some time

t0+t<=t 0+D i, the supply of processor time (t) becomes
equal to or greater than the demand for processor time
(wi(t)).

– In other words: wi(t)<=t for some t<=D i where
Di<=p i

– If wi(t)>t for all 0<t<= D i, then Ti cannot complete by
its deadline

– Hence, the system of tasks is infeasible

Schedulability Tests for RM and DM

• Time-Demand Analysis - of task Ti

– 1) compute the time-demand function wi(t)

– 2) check whether the inequality
– wi(t) <= t

• is satisfied for values of t that are equal to:
– t = jpk; k=1,2,…,i; j=1,2,…,floor(min(pi,Di)/pk)

• If the inequality is satisfied at any of these instants,
then task Ti is schedulable

• If the inequality is not satisfied at any of these
instants, then task Ti is not schedulable

12

Schedulability Tests - Example
• T1=(3,1), T2=(5,1.5), T3=(7,1.25), T4=(9,0.5)

• total utilization =1/3 + 1.5/5 + 1.25/7 + 0.5/9 = 0.87

• Using RM scheduling

2

4

6

8

102 4 6 8

10

t

T
im

e-
de

m
an

d
fu

nc
ti

on
s

w1(t)

w2(t)

w3(t)

w4(t)

time

dot represents time instant
at which the job released at
the critical instant completes

wi(t) = t

Schedulability Tests - Example

2

4

6

8

102 4 6 8

10

t
w1(t)

w2(t)

w3(t)

w4(t)

time

w5(t) never crosses the line
representing wi(t) = t
thus T5 is not schedulable

• add a task T5 = (10, 1)
• T1=(3,1), T2=(5,1.5), T3=(7,1.25), T4=(9,0.5)
• total utilization =1/3 + 1.5/5 + 1.25/7 + 0.5/9 + 1/10 = 0.97

14

12

w5(t)

wi(t) = t

