
Information Systems Vol. 25 No. 4, pp. 261–286, 2000
 2000 Elsevier Sciences Ltd. All rights reserved

Printed in Great Britain
0306-4379/00 $20.00 + 0.00

261

CONCURRENCY CONTROL IN MOBILE DISTRIBUTED REAL-TIME
DATABASE SYSTEMS†

KAM-YIU LAM

1, TEI-WEI KUO
2, WAI-HUNG TSANG

1, and GARY C.K LAW
1

1Department of Computer Science City University of Hong Kong 83 Tat Chee Avenue, Kowloon, Hong Kong

2Department of Computer Science and Information Engineering National Chung Cheng University Chiayi, 621 Taiwan, ROC

(Received 17 December 1998; in final revised form 15 February 2000)

Abstract � :LWK� WKH� UDSLG� DGYDQFHV� LQ� PRELOH� FRPSXWLQJ� WHFKQRORJ\�� WKHUH� LV� DQ� LQFUHDVLQJ� GHPDQG� IRU�
processing real-time transactions in a mobile environment. This paper studies concurrency control problem in
mobile distributed real-time database systems (MDRTDBS). Based on the High Priority Two Phase Locking (HP-
2PL) scheme, we propose a distributed real-time locking protocol, called Distributed High Priority Two Phase
Locking (DHP-2PL), for MDRTDBS. In the protocol, the characteristics of a mobile computing system are
considered in resolving lock conflicts. Two strategies are proposed to further improve the system performance and
to reduce the impact of mobile network on the performance of the DHP-2PL: (1) A transaction shipping approach
is proposed to process transactions in a mobile environment by exploring the well-defined behavior of real-time
transactions. (2) We explore the application semantics of real-time database applications by adopting the notion of
similarity in concurrency control to further reduce the number of transaction restarts due to priority inversion,
which could be very costly in a mobile network. A detailed simulation model of a MDRTDBS has been
developed, and a series of simulation experiments have been conducted to evaluate the performance of the
proposed approaches and the effectiveness of using similarity for concurrency control in MDRTDBS.
© 2000 Elsevier Science Ltd. All rights reserved

Key words: Distributed Real-Time Databases, Mobile Real-Time Databases, Concurrency Control, Data
Similarity, Transaction Scheduling

1. INTRODUCTION

Recent advances in wireless communication technology have made mobile information services a

reality [9, 10, 25]. A number of novel mobile computing systems, such as tele-medicine systems, real-
time traffic information and navigation systems, and mobile Internet stock trading systems, are emerging
as mobile users require instant access to information using their palmtops, personal digital assistant
(PDA) and notebook computers. Mobile computing technology not just only improves the distribution
and flow of information, but at the same time, it also greatly increases the functionality of real-time
database applications. The realization of “instant” information access over a mobile network relies on
real-time processing of transactions and it makes the timeliness of data accesses an important issue. As a
result, research on processing soft real-time transactions in mobile distributed real-time database systems
(MDRTDBS) is receiving growing attention in recent years [3, 14, 21, 32, 35].

Owing to the intrinsic limitations of mobile computing systems, such as limited bandwidth and
frequent disconnection, the design of an efficient and cost-effective MDRTDBS requires techniques that
are quite different from that in distributed real-time database systems (DRTDBS) which are supported
with wired networks [18]. It is much more difficult to meet transaction deadlines in a mobile environment
as there exist various factors, such as network performance, concurrency control and transaction
scheduling, which can seriously affect the transaction performance. Two of the most important
performance objectives are how to meet the urgency of transactions and how to satisfy the temporal
constraints of database, where temporal constraints refer to the freshness of data objects in the database
[27]. Many real-time database applications are used to monitor the status of the objects in the external
environment and they must generate timely responses to critical events. For example, in a stock trading
system, a late response to a stock analysis transaction may result in a loss of a good trading opportunity.
The consequence of missing a transaction deadline in a tele-medicine system for ambulance services may
result in a loss of a human life.

†Recommended by Patrick O’Neil

KAM-YIU LAM et al.

262

One of the most important issues to ensure timeliness of transaction execution is concurrency control.
However, the concurrency control protocols for conventional database systems are not suitable to real-
time database systems. Real-time transactions are critical and have to be scheduled to meet their
deadlines. Conventional concurrency control protocols, such as two phase locking (2PL) and optimistic
concurrency control method [6], often schedule transactions on an equal basis. Higher-priority
transactions may suffer from an unlimited amount of priority inversion time, where priority inversion is a
situation in which a higher-priority transaction is blocked by a lower-priority transaction [28]. In the past
decade, researchers have proposed various real-time concurrency control protocols, e.g., [1, 8, 24, 29, 28,
30, 36], for single-site as well as distributed RTDBS. In particular, [8, 28] proposed the idea of priority
inheritance, which lets a lower-priority transaction inherit the priority of a higher-priority transaction
which is blocked by the lower-priority transaction, to reduce the number of priority inversions of the
higher-priority transaction.

The priority inversion problem may also be resolved by transaction restart. The High Priority Two
Phase Locking (HP-2PL) protocol [1] restarts a lower-priority transaction if a higher-priority transaction
wants to set a lock which is held by the lower-priority transaction. The priority inversion problem, in
general, is also resolved by transaction restart in the optimistic concurrency control protocols. In the
optimistic concurrency control with wait 50 (OCC-wait 50) [8], the execution of a transaction is divided
into three phases: the read phase, the execution phase and the validation phase. Data conflicts amongst
different transactions will be resolved when one of them enters the validation phase. If the number of
conflicting transactions, which priorities are higher than the validating transaction, is not greater than
50% of the total number of conflicting transactions, all the conflicting transactions will be restarted and
the validating transaction is allowed to enter the write phase and then commit. Otherwise, the validating
transaction will be blocked.

Although many researchers, e.g., [1, 8, 9, 13, 24, 28, 36], have done excellent research in concurrency
control for single-site and distributed RTDBS, there is little work in concurrency control for MDRTDBS
which is a fast growing and important area. In a MDRTDBS, the mobile network imposes a serious time
burden on the performance of a MDRTDBS and it also can seriously affect the performance of the
adopted concurrency control protocol. Although the concurrency control protocols proposed for
DRTDBS can be extended for MDRTDBS, their performance may be very different from that in a
DRTDBS [31], due to the unique characteristics of mobile network.

Compared to wired networks, mobile networks are much slow, unreliable, and unpredictable. The
mobility of clients affects the distribution of workload in the network and the system. Disconnection
between mobile clients and base stations is common [9]. It can seriously affect the probability of data
conflicts and the deadline missing probability. The poor quality of services provided by a mobile network
can also seriously increase the overheads and affect the effectiveness of a concurrency control protocol in
resolving data conflicts [32] as the transactions now require a longer time for completion.

In this paper, we study concurrency control for MDRTDBS. Based on the High Priority Two Phase
Locking (HP-2PL) scheme [1], the Distributed HP-2PL (DHP-2PL) protocol is proposed for MDRTDBS.
We consider transactions, which are simple flat transactions with read and write operations. This
assumption on transaction structure is reasonable for many mobile soft (and firm) real-time applications
with web-oriented interfaces, especially for applications running on mobile palmtop computers such as
stock monitor systems and traffic information systems. The simplification of transaction behavior and
characteristics may result in good strategies in designing real-time transaction scheduling algorithms to
improve the system performance. Two new strategies are proposed to further improve the performance of
the DHP-2PL. We first propose the transaction shipping approach to reduce the performance dependency
of a concurrency control protocol on the performance of the underlying mobile network. We then adopt
the notion of similarity to resolve data conflicts, which can be very costly in a mobile environment.
Different issues in the design of the similarity-based concurrency control protocol are suggested. A
detailed model of a MDRTDBS has been developed, and a series of simulation experiments is conducted
to demonstrate the capability of the proposed approaches, for which we have obtained very encouraging
results.

The main contributions of the paper are: (1) To our best knowledge, this is one of the first papers on
concurrency control for MDRTDBS with a detail performance study. (2) We have designed a distributed
real-time locking protocol in which the characteristics of a MDRTDBS are considered for resolving lock
conflicts. (3) A transaction shipping approach is proposed to reduce the impact of mobile network on the
system performance and the performance of the real-time locking protocol. Different issues in the

Concurrency Control in Mobile Distributed Real-Time Database Systems

263

implementation of the transaction shipping approach are discussed in details. (4) We have extended our
real-time locking protocol to be a similarity-based protocol. Different issues in the design of the real-time
similarity-based protocols are suggested. (5) A detailed simulation model is developed, in which the
mechanisms in mobile communications such as mobility of clients and disconnection, and real-time
transaction processing, are included. (6) Simulation experiments have been performed to investigate the
performance of the proposed protocols and approaches, and the effectiveness of using similarity as the
correctness criterion for concurrency control in MDRTDBS.

The rest of this paper is organized as follows: In Section 2, a model of MDRTDBS is defined. In
Section 3, the concurrency control protocol for MDRTDBS is discussed, and the DHP-2PL is introduced.
In Section 4, the transaction shipping approach for MDRTDBS is introduced. In Section 5, the notion of
similarity is applied for concurrency control in MDRTDBS, and a similarity-based real-time locking
protocol is proposed based on the DHP-2PL. In Section 6, the performance MDRTDBS model is
described. The baseline setting, the parameters, and the performance measures are given. The simulation
results are presented with discussions. Finally, the conclusions and future research directions are given in
Section 7.

2. MODEL OF A MOBILE DISTRIBUTED REAL-TIME DATABASE SYSTEM

2.1. System Architecture

A MDRTDBS consists of four major components: the mobile clients (MCs), the base stations, the
mobile network, and the main terminal switching office (MTSO) [16, 22], as shown in Figure 1. The
mobile network is assumed to be a radio cellular network and the entire service area is divided into a
number of connected cell sites. Within each cell site, there is a base station, which is augmented with a
wireless interface to communicate with the MCs within its cell site. The cellular radio network is assumed
to be the Global Systems for Mobile Communication (GSM) 900† in which two sub-bands of 25 MHz
each are defined. One of the sub-bands is 890 to 915 MHz and is for uplink (for the mobile clients to
transmit signals to the base station). Another sub-band is 935 to 960 MHz and is for downlink. Within
each sub-band, a number of channels are defined for transmitting radio signals which can be data or
control signals. Each channel is divided into several time frames by using the time division multiple
access (TDMA) method. Usually, the data transmission rate of a channel is between 9.6 to 14.4 Kbps‡.

The base stations at different cell sites are connected to the MTSO by a point-to-point wired network.
Thus, the communications between the base stations and the MTSO are much more efficient and reliable
than the communications between the base stations and the mobile clients. The MTSO is responsible for
active call information maintenance, performance of handoff procedure, channel allocation, and message
routing. Attached to each base station is a real-time database system containing a local database which
may be accessed by transactions issued by the MCs within the cell site or from other cell sites via the
MTSO.

An MC may move around within the same cell site or cross the cell border into another cell site.
Periodically, it sends a location signal to its base station through an uplink channel. The strength of signal
received by a base station depends on several factors, such as the distance between the MC and the base
station, and the surrounding buildings. When an MC is crossing the cell border, the strength of signal
received by a base station will become very weak. If the strength of the signal is lower than a certain
threshold level, the MTSO will be notified, and then the MTSO will perform a handoff procedure. It
sends out requests to all the base stations, and the base stations respond by returning the strength of the
location signals received from the MC. The MTSO will then assign the MC to the base station, which has
received the strongest signal. Usually, this is the base station, which is responsible for the cell site where
the MC is entering.

†In this paper, we focus our discussions on concurrency control of data access over a radio cellular network although there exist

several other mobile communication technologies such as satellite and wireless ATM. They are much more expensive.
‡Although the cellular radio network technologies are improving, and different new standards such as GSM 1800 and DCS

1800, which can support more channels, are emerging, the bandwidth is still a great concern in a cellular radio network.

KAM-YIU LAM et al.

264

Fig. 1: System Architecture of the Mobile Distributed Real-Time Database System

An MC transaction may need to access databases located at several base stations. The MC first issues

a call request to the base station of its current cell site. A channel is granted to the MC after the
completion of a set-up procedure. The execution of the setup procedure incurs a fixed overhead as it
involves communications amongst the MC, the base station, and the MTSO. Since the number of
channels between a base station and its MCs is limited, it is possible that the channel request may be
refused due to unavailability of free channels. The queuing for channels is according to the priorities of
the transactions. If the number of attempts exceeds a specific maximum number, the channel request and
the requesting transaction will be aborted. Due to channel contention and slow (and unreliable)
communication, the time required to establish a channel is unpredictable. Once a channel has been
established, the transaction will be sent out through the RF transmitter from the MC to the base station.
When an MC is crossing the cell site border while it is communicating with its base station, a new
channel will be created by the MTSO with its newly assigned base station after a setup procedure is
completed. However, it is possible that there is no free channel available at the new cell site. In this case,
it will retry for a number of times. If it is still not able to get a channel, the transaction will be aborted.
Due to noise and interference, the signal, which carries data, may be corrupted while it is being
transmitted. In this case, the data will be re-transmitted. If the transmission of signals is corrupted
consistently after several times, a disconnection may have occurred. For that case, the transaction may
need to wait until a new channel is granted before it can proceed. Because of high error rate and non-
stability of signal transmission, the effective data transmission rate is unpredictable.

2.2. Database and Transaction Models

The entire database is partitioned into local databases and distributed at different base stations. The

databases consist of two types of data objects: temporal and non-temporal. Temporal data objects are
used to record the status of the objects in the external environment. Each temporal data object is
associated with a timestamp, which denotes the age of the data object. If a transaction may update a
temporal data object, then the transaction is given a timestamp when it is initiated. If the transaction
commits successfully before its deadline, the timestamp of any data object, which is updated by the
transaction, will be set as the timestamp of the transaction.

The validity of a temporal data object is defined by an absolute validity interval (avi) [27, 36]. A
temporal data object satisfies the avi constraint if its age is up to date, i.e., the difference of the current
time and the age is no more than the avi. A relative validity interval (rvi) may be given to a transaction
which requires that the maximum age difference of the data objects read by the transaction is not larger
than rvi [27, 36]. Non-temporal data objects are either derived by operations of transactions or are
statically set during system initialization.

Concurrency Control in Mobile Distributed Real-Time Database Systems

265

Transactions from the MCs are assumed to be simple flat transactions with a collection of read and
write operations [6]. In between the operations of a transaction, control statements may be defined to
control the logic flow of the transaction. Examples of such application systems are jockey-club betting
systems, Internet programmed stock trading systems, traffic navigation and information systems, etc.

Each transaction is given a deadline and a criticality. The priority of a transaction is derived based on
its deadline and criticality. It is assumed that the EDF algorithm is used for scheduling the transactions in
using the CPU. It is assumed that the transactions are firm real-time [34]. If the system cannot complete a
transaction before its deadline, the transaction will be aborted. Operations may access data objects
residing at different base stations. Thus, a transaction may have several processes, called transaction
processes, at different base stations for its execution. When an operation of a transaction accesses a data
object residing at another base station, the operation will be routed to the base station via the MTSO and a
new transaction process will be created if there is no process at that site for the transaction. When all the
operations of a transaction have been processed, a commit protocol will be performed to ensure the failure
atomicity of the transaction processes of the transaction. It is assumed that the well-known two phase
commit protocol is adopted because of its simplicity and well-known performance characteristics† [6].

3. CONCURRENCY CONTROL PROTOCOL FOR MDRTDBS

In the design of concurrency control protocols for MDRTDBS, there are two important

considerations: (1) how to minimize the cost and overheads for resolving data conflicts; and (2) how to
minimize the impact of mobile network on the performance of the protocol. Restarting a transaction is
highly expensive in a mobile environment. Although priority inheritance [8] is effective in managing the
priority inversion problem in single-site RTDBS, it may not be effective in a MDRTDBS due to the slow
network. It may take a long time before the priority of a transaction is “inherited”. Furthermore, deadlock
is possible when priority inheritance is used. Deadlock is highly undesirable to real-time systems,
especially in a distributed environment. It is not only because it greatly increases the response time of
(deadlocked and other affected) transactions, it also wastes a lot of system resources. The detection and
resolution of a deadlock in a distributed environment may also consume a lot of resources. The most
common method for distributed deadlock resolution is time-out, which is obviously not suitable to
RTDBS due to the difficulty in determining the appropriate timeout period.

Although the optimistic concurrency control protocols have been shown to give a good performance
in single-site RTDBS [8, 20], they may not be suitable to MDRTDBS. The validation test required in the
optimistic concurrency control protocols can be very complex in a distributed environment [17], and it
will be more complicated in a mobile network.

For the purpose of this paper, we choose to adopt a lock-based approach in which both transaction
restart and priority inheritance are used to resolve the problem of priority inversion. By extending the
well-known HP-2PL [1], a distributed extension of HP-2PL, called Distributed HP-2PL (DHP-2PL), is
proposed for MDRTDBS. In the protocol, special considerations are paid on the characteristics of the
mobile network, e.g. low bandwidth and frequent disconnection. For example, special attention is given
on how to reduce the number of transaction restarts, which can be very costly due to the low bandwidth.
If a transaction is committing, it will not be restarted even if it has a lock conflict with a higher-priority
transaction. Instead, priority inheritance is used to reduce the blocking time of the higher-priority
transaction. Priority inheritance is applied to the transaction process of the lock-holding transaction at the
conflicting site. So, the time required to raise up the priority of a transaction process can be very short.
Unlike many other lock-based protocols, such as those simply adopt priority inheritance, DHP-2PL is free
of deadlock as priority inheritance is only restricted for resolving lock conflict with committing
transactions.

As we can see in the model description in Section 2, the system consists of both a mobile network
(connecting the mobile clients and the base stations) and a reliable wired network (connecting the base
stations and MTSO). Since mobile network is vulnerable to disconnection, strategies for resolving data
conflict should consider the network quality connecting the conflicting transactions. A different strategy
should be used if a mobile network instead of a reliable wired network connects the conflicting

†Other real-time commit protocol may be used [Gupt96, Gupt97]. However, in here, we assume a non-real-time commit

protocol in order to simplify the analysis.

KAM-YIU LAM et al.

266

transactions especially when it is suspected that disconnection may have occurred. In the DHP-2PL, a
cautious waiting scheme is included to resolve this kind of lock conflicts.

DHP-2PL is a distributed locking protocol. The local database system at each base station has a lock
scheduler, which manages the lock requests for the data objects residing at the base station. The definition
of the DHP-2PL is as follows, where Tr and Th are the lock-requesting transaction and the lock-holding
transaction, respectively:

Lock Conflcit (Tr, Th)
Begin
 If Priority(Tr) > Priority(Th)

 If Th is not committing
 If Th is a local transaction
 Restart Th locally
 Else
 Restart Th globally
 Endif
 Else
 Block Tr until Th releases the lock
 Priority(Th):= Priority(Tr) + fixed priority level
 Endif
 Else
 Block Tr until Th releases the lock
 Endif

End

A transaction is local if it only accesses data objects resided at one base station. Otherwise, it is a
global transaction. Similar to the HP-2PL, the DHP-2PL uses a transaction restart mechanism to resolve
lock conflicts between non-committing transactions. Restarting a local transaction is simply done by
restarting the transaction process at the conflicting base station. To restart a global transaction, restart
messages are sent to the base stations where some operations of the global transactions are executing or
have executed. Global restart takes a much longer time and requires much higher overheads. Thus, the
number of transaction restarts, especially a global one, should be minimized. A reasonable approach is to
allow a committing transaction to hold a lock until it has finished the commit procedure even though a
higher-priority transaction is requesting the lock. Although this approach may create the priority inversion
problem, the blocking time of the higher-priority transaction will not be long if the committing
transaction is assigned a sufficiently high priority by using priority inheritance. The priority of the
committing transaction will be raised up by two factors. Firstly, its priority will be at least as high as the
highest priority of all of its blocked transactions, and, secondly, a fixed priority level should be added to
its priority to make it even higher than all other executing transactions. The purpose is to finish the
committing transaction as soon as possible. The time required to raise up the priority of a transaction
process should be very short as both conflicting processes are located at the same site. No deadlock is
possible for the priority raising of any committing transaction. It is because the committing transaction
will not be blocked by any other executing transaction as it will not make any lock request during its
commitment.

A common characteristic of mobile networks is that disconnection between a mobile client and its
base station is common. In processing a transaction, the control of a transaction may flow between its
processes at the base stations and the process at its originating mobile client. In case a disconnection
occurs while a transaction is locating at the mobile client (the control flow of the transaction is at the
mobile client), the impact of the disconnection on the system performance can be very serious due to
chain of blocking. It does not only greatly increase the deadline missing probability of the disconnected
transaction, other transactions, which are directly or transitively blocked by the disconnected transaction,
will also be affected. The result may be fruitless blocking which is a situation where a blocked transaction
is finally aborted due to deadline missing. In the above protocol, the problem of fruitless blocking may
occur when a lower-priority transaction is blocked by a higher-priority transaction which is a
disconnected transaction. To minimize the impact of disconnection and the probability of fruitless
blocking due to disconnection, we may use a cautious waiting scheme in which a higher-priority
transaction is restarted by a lower-priority transaction due to data conflict if the higher-priority transaction
is suspected to be a disconnected transaction.

Concurrency Control in Mobile Distributed Real-Time Database Systems

267

Let each executing transaction process be associated with a location indicator. When a transaction is at
the mobile client or it is waiting to move back to the mobile client, the location indicator of its processes
will be set as “mobile client”. Otherwise, it is set as “base station”. When the location indicator of a
transaction process is “mobile client”, the transaction is vulnerable to disconnection. The following
summarizes how the cautious waiting scheme is incorporated into the DHP-2PL:

If (the priority of the lock-requester > the priority of the lock-holder) and
 (the lock-holder is not committing)
 Restart the lock-holder (globally or locally, depending on the type of the transaction)
Else
 If location indicator of the lock-holder is “mobile client”
 If the time already spent at the client side > threshold
 Ping the mobile client where the lock-holder is residing

//* the base station sends a message to the mobile client
 to test whether the mobile client is disconnected or not *//
 If no response from the mobile client
 Restart lock-holder
 Else

 Block the lock-requester
 //* repeat the checking after another threshold *//
 Endif

 Else
 Block the lock-requester

 //* the checking will be performed again when the time already spent
at the client side is greater than the threshold value *//

 Endif
 Else
 Block the lock-requester.

Endif
Endif

The threshold is a tuning parameter. It is a function of the average performance of the mobile network

under normal situations. If a transaction has been at the mobile client for a long time, e.g., greater than the
threshold value, and its base station cannot communicate with the mobile client currently, disconnection
is assumed. The lock-holding transaction will be restarted even though its priority is higher than the
priority of the lock-requesting transaction. Although restarting the lock-holding transaction will make it
have a high probability of missing deadline, the restart will not affect the system performance
significantly as the lock-holding transaction is likely to miss its deadline due to disconnection. On the
other hand, restarting the lock-holding transaction can increase the chance of meeting the deadline of the
lock-requesting transaction. Otherwise, it is highly possible that both of them will miss their deadlines.
Note that simply making the assumption of disconnection based on pinging the mobile client may not be
sufficient as mobile networks are subjected to different transient communication failures, which are much
less harmful than disconnection. A transient communication failure will only last for a very short time and
can usually be solved by data retransmission.

4. STRATEGIES FOR PROCESSING TRANSACTIONS IN MDRTDBS

In this section, we discuss different strategies for processing transactions in a MDRTDBS. A new

approach, called transaction shipping, is proposed. The goal of the transaction shipping approach is to
reduce the impact of mobile network on the performance of the DHP-2PL and to improve the system
performance.

4.1. Data Shipping and Query Shipping

There are two well-known approaches for processing transactions in a client-server database system:
query shipping and data shipping [5]. In the data shipping approach, a transaction initiated by a client will
be processed at the client. While the transaction is processing, the client sends data requests, which are

KAM-YIU LAM et al.

268

required by the transaction, to the database server. The server responds to the requests by sending the
required data objects to the client. The processing of the transaction will be completed at the client.

In the query shipping approach, the client sends queries to the database server for the transaction,
instead of data requests. Once the server receives a query, it processes the query and sends the results
back to the client. In the query shipping approach, the communication cost and the buffer space required
at the client side are smaller than that in the data shipping approach. Also, the query shipping approach
provides a relatively easy migration path from an existing single-site system to the client-server
environment since the database engine can have a process structure similar to that of a single-site
database system. On the other hand, the data shipping approach can off-load functionality from the server
to the clients. This may improve the scalability of the system and balance the workload in the system. The
responsiveness of the system can also be improved by caching data at the client. For that case,
transactions may be processed locally at the client if they can find their required data.

Although the query and data shipping approaches are suitable to client-server database systems
connected with reliable high-speed networks, they may not be suitable to MDRTDBS, which run over a
mobile network with a bandwidth rated in the range of 9.6kbps to 14.4kbps. The communication
overheads of these two approaches are often high because processing of each operation may require a
communication (and the establishment of a new communication channel) between the mobile client and
the database server. Remember that communication channels in a MDRTDBS are always limited
resources. Furthermore, the data shipping approach usually requires the transmission of a large volume of
data objects and the management of data objects at the client caches. Since the mobile network is likely to
be the bottleneck resource, the transmission delay can be very long and the resulting effect will be a
higher probability to miss deadlines.

4.2. Transaction Shipping Approach

A better transaction processing strategy for MDRTDBS should be designed to reduce the
communication overheads between the mobile clients and the base stations for a transaction, and to
alleviate the dependency of system performance on the performance of the underlying network. We
propose to “ship” the entire transaction to the database server (base station) for processing instead of
shipping every operation or data request to the database server. We call this approach as transaction
shipping. Although the idea is simple, there exists many practical problems when it is applied to a
MDRTDBS such as how to identify the execution path and the required data objects of a transaction
before its execution, and how to deal with the dynamic properties in transaction execution. In here, we
suggest a pre-analysis approach. The practicality of the pre-analysis comes from the observation that the
behavior of many real-time transactions is more predictable comparing to the transactions in
conventional database systems. To deal with the dynamic properties of the real-time transactions, a data
pre-fetching mechanism is included in the transaction shipping approach to reduce the cost of incorrect
prediction in the pre-analysis.

4.2.1. Transaction Predictability

It is generally agreed that the functions and behavior of transactions in a real-time database
application are more predictable. Mostly, they can be classified into different types and different
transaction types will have different pre-defined behavior and critically [11]. For example in a medical
information system, real-time transactions are for monitoring the physical status of a critical patient from
various sensor devices, such as the blood pressure, the heart beat rate, and the body temperature. The
arrival pattern and data requirements of the transactions are pre-defined. In some real-time database
applications, e.g., programmed stock trading, although the transaction arrival pattern may be sporadic,
their data requirements can be predicted with a high accuracy. For example, in a programmed stock
trading, each investor may have a pre-defined investment plan, e.g. what their interested stocks are and
how to make the trading analysis under different conditions. In a traffic navigation system, the physical
connections of the roads are pre-defined. When searching the best path to a destination from the current
position based on the current road conditions, the set of roads to be search is pre-defined.

Concurrency Control in Mobile Distributed Real-Time Database Systems

269

 Mobile Network

 Wired

 Network

Fig. 2: Process Architecture under Transaction Shipping Approach

4.2.2. Pre-Analysis Phase

In the transaction shipping approach, the execution of a transaction is divided into two phases: the

pre-analysis phase and the execution phase. Figure 2 shows the transaction architecture when it is
processed under the transaction shipping approach. Once a transaction is initiated at a mobile client, a
coordinator process, called master coordinator, will be created at the mobile client. Before shipping a
transaction to the base station, the system will perform a pre-analysis on the transaction to derive its
characteristics, e.g., what the operations of the transaction are and what the execution path of the
transaction is. The concept of pre-analysis is similar to the two phase methods discussed in [23].
However, it should be noted that [23] is concerned about how to reduce the unpredictability in data access
by using the concept of access invariant. In here, we use the pre-analysis to predefine the execution path
of a transaction in order to reduce the number of communications between the mobile clients and the base
stations for a transaction.

The pre-analysis of a transaction consists of two phases. In the first phase, the set of operations in the
transaction will be identified. It is usually not difficult to identify the operations in a transaction. For
example, if SQL statements are used to access the database, the SELECT statements are read operations
and the INSERT statements are write operations. Note that transactions are assumed to have a simple flat
structure. At this stage, it may not be necessary to identify the set of data objects required by the
operations. Actually, it may not be easily done at the mobile client as it only contains limited information
about the database system and the location of the data objects in the system. The required data objects of
an operation will be determined while the transaction is executing at the base stations.

In the second phase, the execution path of the transaction, e.g., the precedence relationships of the
operations, will be determined. For some transactions, the whole execution path cannot be determined
until the data objects required by the transactions have been identified. For example, some conditional
statements are based on the values of the data objects. For such transactions, the pre-analysis may identify
the transaction type first and then make the prediction based on the pre-defined characteristics of that
transaction type.

After the completion of the pre-analysis, a signature of the transaction will be created. A signature
transaction Si for transaction Ti consists of a 4-tuple:

 Si = (Oi, Di, Ci, <i)

where Di is the deadline of Ti.
Ci is the criticality of Ti.
Oi is a subset of the operations in Ti.
<i is the partial order relationship among operations in Oi.

<i defines the precedence relationship among the operations. If Opj <i Opk, then Opk can start its
execution only after the completion of Opj, where Opj and Opk are operations of Ti.

Master
Coordinator

(at mobile
client)

Image
Coordinator

(at base
station)

Cohort
process at
other base
station

Cohort
process at
other base
station

Cohort
process at
other base
station

KAM-YIU LAM et al.

270

Fig. 3: The Transaction Shipping Approach

4.2.2. Execution Phase

The signature transaction is forwarded to the base station of the MC through the mobile network.

Once the server at the base station receives the transaction signature, it will create a process, called image
coordinator, for the transaction. The image coordinator will take over the job from the master coordinator
to process the transaction. Other transaction processes (cohorts) for the executions of the transaction will
be created at other base stations if the operations of the transaction require to access the data objects
located at that base stations.

The benefit of defining an image coordinator at the base station is that the connection between base
stations is much better than the connection between the MCs and its base stations. Thus, it facilitates the
management of the transactions and improves the performance of the atomic commitment protocol.
Whenever a transaction has to be restarted, all its cohort processes (excluding the master coordinator and
the image coordinator) will be destroyed after the completion of undo operations. The image coordinator
is responsible for restarting the transaction from its beginning if its deadline has not been missed.

4.2.3. Dynamic Properties of Transactions

Although the transactions in real-time database applications are more well-defined, they may still have

some dynamic properties. Due to the dynamic properties and the interactivities between transactions and
mobile users, data input from MC may still be needed while a transaction is executing. As a result, the
pre-analysis of a transaction may need to be re-done while it is executing. For that case it has to go back
to its originating MC. Before a transaction goes back to the mobile client, the system will pre-fetch the
data objects possibly needed by the next operation of the transaction, and then ships the data objects with
the transaction back to the mobile client. The purpose of the data pre-fetching mechanism is to process
the next operation of the transaction at the mobile client so that the total number of communications
between the mobile client and the base station can be reduced.

The assumption of the data pre-fetching mechanism is that the data requirements of the next operation
can be predicted with a high accuracy. Again, the validity of the assumption is based on the well-defined
behavior of real-time transactions. Suppose the execution path of a transaction T1 is originally predicted
to be Path 1 (operations: Op1, Op2 and then Op3) in the first pre-analysis as shown in Figure 4. After the
completion of operation Op2, it finds out that the original prediction is incorrect, and T1 has to go back to
the mobile client to “re-define” the execution path which is either Path 2 or Path 3 according to the pre-
defined behavior of the transaction. Before, T1 is shipped back to the mobile client, the system pre-fetches

Transactions

Transaction
Signature

Coordinator

 Database

Wired
Network to
Other Base
Stations

Mobile Network

Mobile Client

Base Station

Concurrency Control in Mobile Distributed Real-Time Database Systems

271

 T1: Path 1
 Op1 Op2 Op3

 Path 2

 Op4

 Op5

Path 3

Fig. 4: Data Pre-Fetching Mechanism

the data objects required by Op4 and Op5. Later at the mobile client, T1 can process the next operation Op4

or Op5. After that, T1 is sent to the base station to commit or continue its following operations. Note that
under the data pre-fetching mechanism, T1 has to set a lock on the pre-fetched data objects. The purpose
to is to ensure the serializability of transaction executions.

Note that the transaction shipping approach does not require the transmission of a large number of
data objects to the clients as required in the data shipping approach. This is an attractive feature to
MDRTDBS as the communication bandwidth is low. Although some data objects are required to be
shipped with a transaction in the data pre-fetching mechanism, the data volume should be much smaller
than in the data shipping approach as the data pre-fetching mechanism is required only when the
predicted execution path is incorrect. Furthermore, only those data objects, which are required by the next
operation, are shipped.

It is obvious that the performance gained from the pre-analysis depends on its accuracy and the
dynamic properties of the transactions. In the best case, one single communication between the MC and
the base station is required for transaction execution. In the worst case, the number of communications
between the mobile client and the base station for each transaction execution is equal to the number of
operations in the transaction. If the system can make a good estimation in the pre-analysis, a lot of
communications can be saved.

5. SIMILARITY-BASED DISTRIBUTED HIGH PRIORITY TWO PHASE LOCKING

Restarting transactions in a MDRTDBS can be very expensive and the restarted transactions will have

a high probability of missing their deadlines. To reduce the probability of data conflicts and transaction
restarts, a less restrictive notion of correctness criterion may be explored for concurrency control, e.g., [7,
12, 15, 26]. In particular, the concept of similarity, which is based on the time-validity of data, is shown
effective for RTDBS [12, 13]. In this paper, we shall consider the technical issues in the design of a
similarity-based real-time locking protocol for MDRTDBS. We will incorporate the concept of similarity
into the DHP-2PL with an attempt to further increase the system concurrency, and to reduce the number
of transaction restart and blocking due to data conflicts. The new protocol is called Similarity-Based
Distributed High Priority Two Phase Locking (SDHP-2PL).

Although the concept of similarity for concurrency control in RTDBS is not new, many technical
issues in the design of a similarity-based real-time locking protocol are still not clear such as how to
resolve the lock conflicts between the read and write operations when some of the conflicts are similar
and some of them are not. Furthermore, it will be interesting to see what will be the effectiveness of using
similarity in improving the performance of a MDRTDBS.

5.1. The Basic Strategies

5.1.1. Data Similarity

Similarity is closely related to the important idea of imprecise computation in real-time systems [19]

and to the idea of partial computation for databases [2]. It has been shown to be very effective in

KAM-YIU LAM et al.

272

improving the performance of RTDBS. For many real-time applications, the value of a data object that
models an object in the external environment cannot, in general, be updated continuously to perfectly
track the dynamics of the external object. At the same time, it is also unnecessary for data values to be
perfectly up-to-date or precise to be useful. In particular, the data values of a data object that are slightly
different are often interchangeable as read data for transactions. This observation underlies the concept of
similarity among data values.

The concept of similarity can be used to extend the conventional correctness criterion for concurrency
control in RTDBS [12, 13], and to balance data precision (based on similarity) and system workload [7].
The notions of similarity and strong similarity were originally introduced in [12], which have the property
that swapping similar conflicting operations in a schedule will always preserve similarity in the output. In
other words, if two operations in a schedule are strongly similar (i.e., they are either both writes or both
reads, and the two data values involved are strongly similar), then they can always be used
interchangeably in a schedule without violating the integrity and consistency of the database. For the rest
of this paper, unless explicitly specified, all similarity relations considered in this paper are strong
similarity relations, and all similar data can be used interchangeably in a schedule without adverse results.
We refer interested readers to [12, 13] for the justification of schedule correctness.

5.1.2. The Basic Strategies for Conflict Resolution

Specifically, we assume that the application semantics allow us to derive similarity bounds for some

of the data objects such that two write operations on the data object must be similar if their time-stamps
differ by an amount no greater than the similarity bound of the data object, e.g., all write operations on the
same object that occur in any interval shorter than the similarity bound of the data object can be swapped
in the (untimed) schedule without violating consistency requirement [13]. The time-stamp of a data object
indicates at which snapshot the current value of the data object is taken from the external environment.
Different data objects may have different similarity bounds. For example, the transactions in a stock
trading system may consider the values of the last traded price of a stock to be similar if they are updated
within a time frame of 10 seconds. For a warehouse keeping system, the similarity bound for the
inventory data may be in minutes.

The existence of similarity bounds provides more freedom in concurrency control: whereas two
conflicting transactions must be totally ordered to preserve serializability, they need not be if their
conflicting operations occur in an interval shorter than the similarity bound, and can therefore be executed
concurrently. The basic strategy for conflict resolution in the Similarity-Based Distributed High Priority
Two Phase Locking (SDHP-2PL) protocol can be summarized as follows:

(i) Suppose transaction Ti issue a read-lock request on data object Dk, and Dk is already write-

locked by a collection of transactions TH. Let Tj be the most recently committed transaction
which updates Dk. If the write operation (on Dk) of Tj and the write operations (on Dk) of all
transactions in TH are similar, then the read-lock request on data object Dk may be granted. It is
because Ti will always read from similar data values, regardless of which transaction in TH
commits (or updates Dk) first.

(ii) Suppose transaction Ti issue a write-lock request on data object Dk, and Dk is already write-

locked by a collection of transactions TW and read-locked by a collection of transactions TR.
Let Tj be the most recently committed transaction which updates Dk. There are two cases to
consider:

(1) If TR is empty, and the conflicting write operation of Ti and the conflicting write operations

of all transactions in TW are similar, then the write-lock of Ti may be granted. It is because
the final state of the database will always be similar regardless of which write operation
performs first.

(2) If TR is not empty, and the conflicting write operation of Ti, the conflicting write operation

of Tj, and the conflicting write operations of all transactions in TW are similar, then the
write-lock of Ti may be granted. It is because the final state of the database will always be
similar and the read operations will read from similar data value regardless of which write
operation performs first.

Concurrency Control in Mobile Distributed Real-Time Database Systems

273

Obviously, if the above similarity test of a lock request fails, then two alternatives must be considered:

(1) the lock-requesting transaction may be blocked; and
(2) the transactions, which cause the blocking, may be restarted.

Which alternative should be used depends on the priorities of the conflicting transactions. In the

SDHP-2PL, we adopt both policies as follows:
Let CT be a subset of TH which consists of transactions that lock Dk in a mode conflicting and non-

similar to the lock request of Ti, and SCT be a subset of CT which consists of transactions with priorities
lower than Ti. If the restart of all transactions in CT will make Ti passing the similarity test and the
priorities of all the transactions in CT are lower than Ti, then the transactions in CT are restarted, and the
lock request of Ti is granted.

If some transactions in CT have priorities higher than Ti, i.e., SCT is not equal to CT, simply
restarting all the transactions in SCT cannot resolve the lock conflict problem. On the other hand,
restarting all the transactions in CT including the higher-priority transactions may have the cyclic restart
problem as the restarted higher-priority transactions may restart Ti later.

There are two possible solutions to resolve the above problem. Firstly, we can use an aggressive
approach in which Ti will be blocked when CT is not equal to SCT and all the transactions in SCT are
restarted. The reason of restarting the transactions in SCT is to minimize the blocking time of Ti as the
time that required to complete the lower-priority transactions can be very long especially in an unreliable
mobile network. Whenever a transaction in (CT – SCT) releases its lock on Dk, a similarity test will be
performed for Ti. In this way, sooner or later, Ti will set a lock on Dk when all the higher-priority
transactions in the (modified) CT have released their locks on Dk. To prevent repeat restarts of lower-
priority transactions, a transaction is not allowed to set a lock if a higher-priority transaction, which is
non-similar to it, is waiting to set the lock.

In the aggressive approach, by restarting the lower-priority transactions, the blocking time of the
higher-priority transaction can be minimized. However, the cost is more transaction restarts and this is not
desirable in a mobile environment as a restarted transaction will have a higher probability of deadline
missing. The second method is a conservative approach, in which the lock-requesting transaction will be
blocked if (CT – SCT) is not empty, e.g., there exists a higher-priority transaction in CT. Each time when
a transaction releases a lock on Dk, a similarity test will be performed for Ti. Ti will be allowed to set a
lock on Dk when all the higher-priority lock-holding transactions are similar to it. The number of
transaction restarts under the conservative approach should be smaller than the aggressive approach.
However, the blocking time of a higher-priority transaction may be longer and it also has the indefinite
postponement problem. In the performance experiments (in Section 6), we will investigate the relative
performance of these two approaches for MDRTDBS.

Note that we propose to use similarity bounds to quantify the similarity of conflicting operations in
this paper. However, we should emphasize that the similarity test in the SDHP-2PL can also be re-
implemented as a test for data-value similarity. For example, let transaction Ti issues a write-lock request
on data object Dk. Under the data-value-based similarity test, the write-lock request must be associated
with an intended written value Vi. The data-value-based similarity test must compare Vi with the intended
written values of executing transactions and the current value of Dk to determine whether the lock request
of Ti should be granted. The lock request is granted only if all of the values are similar. The choice
between a similarity-bound-based similarity test and a data-value-based similarity test in a MDRTDBS is
entirely application-dependent. For the purpose of this paper, we should not focus the discussions of
SDHP-2PL on the selection of similarity tests. Instead, we should explore the effectiveness of using
similarity for MDRTDBS.

5.2. SDHP-2PL Protocol Definition

In this section, we define the Similarity-Based Distributed High Priority Two Phase Locking (SDHP-

2PL) following the basic strategies defined in the last sub-section.
Let a transaction Tr request a lock in a specified mode, i.e., read or write, on a data object Dk residing

at a base station. Tr invokes the lock request procedure of the SDHP-2PL, which is defined, as follows, to
set the lock.

KAM-YIU LAM et al.

274

Lock-Request (Tr, Mode, Dk)
 Begin
 If the lock request of Tr is similar to existing locks on data object Dk
 Then /* Please see Section 5.1.2 for the similarity of locks */
 Return(Success)
 Else

 Let CT be the set of transactions that lock Dk in a mode
conflicting and non-similar to the lock request of Tr and
SCT be a subset of CT which consists of transactions with a priority lower

than Tr
 Case Aggressive approach

For each transaction Th in SCT Do
 If Th is not committing
 Then
 Restart Th locally (or globally) if Th is a local
 (or global) transaction.
 Remove Th from CT
 Else
 Priority(Th) = Priority(Tr) + fixed priority level
 EndIf
 EndFor
 If CT is still not empty
 Then
 Block Tr until all transactions in CT release conflicting and

 non-similar locks.
 EndIf

 Return(Success)
Case Conservative approach
 If CT is not empty and CT ≠ SCT

 Then
 Block Tr until all transactions in (CT-SCT) release conflicting and

 non-similar locks.
 Else

 For each transaction Th in CT Do
 If Th is not committing
 Then
 Restart Th locally (or globally) if Th is a local
 (or global) transaction.
 Remove Th from CT
 Else
 Priority(Th) = Priority(Tr) + fixed priority level
 EndIf
 EndFor

 EndIf
 Return(Success)

 EndIf
 End

5.3. Implementation and Performance Issues

The implementation of the similarity-based protocol will not incur heavy additional overheads. The
main overhead is in the checking of similarity. The checking is performed whenever a lock conflict has
occurred. Since the lock table is assumed at the main memory, the comparison amongst the similarity
bounds of the conflicting data objects and the time-stamps of the conflicting transactions should be able
to be performed in an efficient way. On the other hand, the benefit of a similarity based concurrency
control protocol is an increase in system concurrency. If the similarity bounds of the data objects are well-
chosen, the benefit obtained from an increased in concurrency control should be more than the overhead
for the similarity checking.

As astute reader may notice that an increase in concurrency may not necessarily result in better
performance, e.g., higher probability of meeting the transaction deadlines. If the similarity bounds are

Concurrency Control in Mobile Distributed Real-Time Database Systems

275

small, even though some of the lock conflicts are similar and concurrent accesses of a data object from
different transactions are allowed, the transactions may later be restarted due to a conflict with another
higher-priority transaction which is not similar to the executing transactions. The consequence is a greater
cost for resolving the lock conflict as more transactions are restarted and greater amounts of resources are
wasted. Thus, the effectiveness of the similarity approach is highly dependent on the values of the similar
bounds of the data objects relative to the time required to complete a transaction. Since mobile network is
slow and unpredictable, the time required to complete a transaction can be very long. It may be that only
large similar bounds can give a significant improvement to the system performance. The effectiveness of
similarity for concurrency control in MDRTDBS and the performance of the SDHP-2PL will be studied
in the next section.

6. PERFORMANCE EXPERIMENTS

We have developed a simulation program for the MDRTDBS model introduced in Section 2 and

simulation experiments are performed:

(1) to study the performance of the DHP-2PL as compared with the HP-2PL in a MDRTDBS;

(2) to study the performance of the transaction shipping approach, as compared with the query

shipping approach;

(3) to compare the performance of the two approaches, aggressive and conservative, for resolving
data conflicts in the SDHP-2PL and to identify the effectiveness of using similarity for
concurrency control in a MDRTDBS.

Note that the purposes of the simulation studies are not to investigate the performance of the proposed

protocols and approaches at a specific mobile environment and for a specific real-time database
application. Instead, the objectives are to identify the performance characteristics of the protocols and
approaches, and to demonstrate the capability of the algorithms in improving the performance of
MDRTDBS. In the experiments, we shall focus ourselves on the issues related to mobile network and
data conflict resolution.

6.1. Simulation Model

A simulation program has been developed using OpNET, which is a proprietary simulation tool

according to the MDRTDBS model introduced in Section 2. In OpNET, a radio module is provided for
mobile communication [22]. With the radio module, most of the details of a cellular radio network, such
as the mobile clients, MTSO and base stations are implemented and the unique features of a mobile
network such as call-setup procedure, tear down features, and handoff procedure, are modeled explicitly.
In the simulation program, the clients are modeled with mobility and may move around and even cross
the cell borders. Different clients are given different trajectories. They can self-locate themselves based
on the received signal strength from the base stations and communicate with the base stations using pre-
defined radio signals via the uplink and downlink channels. Disconnection is modeled explicitly by
defining a probability for a disconnection between a mobile client and its base station every time when a
channel request is made. Transient errors in communication are modeled by a noise factor, which affects
the strength of radio signal received by the base stations and mobile clients.

In the system level, a DRTDBS model is implemented [31] in which the Distributed High Priority
Two Phase Locking (DHP-2PL) is used for concurrency control. The database system at each base station
is shown in Figure 5. It consists of a scheduler, a CPU, a ready queue, a local database, a lock table, and a
block queue. It is assumed that the database is resided at the main memory in order to eliminate the
impacts of disk I/O scheduling on the system performance [1, 33]. To simplify the model, we further
assume that all the temporal data objects have the same avi and rvi†. In each local database system, an

†Note that if the avi and rvi or the temporal data objects are different and some of them have a smaller value, the probability of

transaction abort will be higher due to tighter temporal constraint. However, the impact of this factor on the relative performance of
the proposed protocols and approaches should be similar.

KAM-YIU LAM et al.

276

Fig. 5: Model of a Database System in a Base Station

update generator creates updates periodically to refresh the validity of the temporal data objects. Updates
are single operation transactions. They do not have deadlines. The priorities of the updates are assigned to
be higher than the priorities of all of the other transactions in order to maintain the validity of the
temporal data objects [36].

Transactions are generated from mobile clients sporadically. Each transaction is defined as a sequence
of operations. It is assumed that the transactions have the same criticality level. Let each operation access
a single data object, and the required data object of an operation is evenly distributed in the database. The
operations have similar CPU requirement statistically. Transactions wait in the ready queue for CPU
allocation, and the CPU is scheduled according to the transaction priorities which are assigned based on
the earliest deadline first policy. Since we assume that the transactions are associated with firm deadlines,
the scheduler will check the deadline before a transaction is allocated the CPU. If the deadline is missed,
the transaction is aborted immediately. If any of the temporal data objects accessed by the transaction
becomes invalid before the commitment of the transaction, the transaction is aborted as it may observe
some out-dated data values. After the completion of a transaction, the mobile client will generate another
transaction after a think time.

In the model, the Distributed High Priority Two Phase Locking (DHP-2PL) is employed for
concurrency control. (In the second set of experiments, we will replace it with the SDHP-2PL.) A lock
table is maintained for the data objects residing at each base station. The scheduler detects lock conflicts
by examining the lock table. Before an operation is processed, its required lock has to be set in an
appropriate mode. After the completion of all the operations of a transaction, the transaction enters the
commit phase in which the two phase commit protocol will be performed. The locks of a transaction will
be released upon its commitment.

6.2. Model Parameters and Performance Measures

Similar to many previous studies on single-site and distributed RTDBS, the deadline of a transaction,

T, is defined according to the expected execution time of a transaction [1, 4, 8, 17, 18]:

Deadline = ar(T) + pex(T) × (1 + SF)

where SF : the slack factor which is a random variable uniformly chosen from a slack range;
ar(T): the arrival time of transaction T;
pex(T): the predicted execution time of T. It is defined as:

pex(T) = (Tlock + Tprocess + Tupdate) × Noper

where Noper: the number of operations in the transaction;
 Tlock: the CPU time required to set a lock;
 Tprocess: the CPU time required to process an operation; and
 Tupdate: the CPU time to update a data object (for write operations).

Update
Generators

5HDG\�4XHXH�

%ORFN�4XHXH�

6FKHGXOHU�

&38�

/RFDO�
'DWDEDVH�

Wired and Wire-
less Communica-
tion Interface Lock

Table

Concurrency Control in Mobile Distributed Real-Time Database Systems

277

Since different transaction processing strategies will expect different transaction execution times, we
assume that all the operations of the transactions are local operations in the calculation of transaction
deadlines.

The baseline setting of the model is shown as follows:

Parameters Baseline Values
System Level
Number of MTSO 1
Number of Cell Sites 7
Location Update Interval 0.2 second
Transmission Speed for Channel 10 kbps
Number of Channels for Each Cell Site 10
Transaction
Think Time 4 seconds
Transaction Size 7 to 14 operations, uniform distribution
Proportion of write operations 1.0
Slack range 10 – 20 (the slack factor is uniformly distributed in

the slack range)
Mobile Network
Number of Mobile Clients 84
Channel Connection time (CL) 1 second
Call Update Interval 0.2 second
Disconnection probability 0.5%
Database
Number of Local Databases 7 (1 in each base station)
Database Size 200 data objects per local database
Concurrency Control Distributed High Priority Two Phase Locking

(DHP-2PL)
Fraction of Temporal Data Objects 10%
Temporal Data Object Update Interval 0.5 update per second per data object
Absolute Threshold (avi) 12 seconds
Relative Threshold (rvi) 8 seconds
CPU
CPU Scheduling Earliest Deadline First
CPU time to process an operation 34 ms
CPU time to set a lock 1 ms
CPU time to release a lock 1 ms
CPU time to check a lock 1 ms
CPU time to update a data object 6 ms
CPU time for pre-analysis 100ms
Deadline Missing Treatment Firm deadline, abort the transaction once the

transaction deadline is found missing

Table 1: Model Parameters and Their Baseline Values

The channel connection time (CL) is the time required to send a message from an MC to its base
station. It is defined based on the transmission speed of the channel and the message size. For a
transmission speed of 10kbps, the channel connection time is 1 second for a message of 1Kbytes. The
location update interval must be smaller than the channel connection time. Otherwise, a channel will not
be able to be created after an MC has crossed the border into another cell site.

In the simulation program, the locality of transactions in accessing data objects is not modeled
explicitly. The reason is that data locality is application-dependent, and it is not our objective to study the
performance of the system for a specific application. Instead, a small database is used which allows us to
study the effect of hot-spots, in which a small part of the database is accessed very frequently by most of
the transactions. Another benefit of using a small database is to create a high data contention

KAM-YIU LAM et al.

278

environment. It helps us to understand the performance characteristics of the concurrency control
protocol. A small database means that the degree of data contention in the system can be easily controlled
by the sizes of the transactions.

The primary performance measure used is the miss rate. It is defined as the number of transactions
which miss deadlines over the total number of transactions generated. In addition to miss rate, we also
measure the conflict probability (CP) which is defined as the total number of lock conflicts over the total
number of lock requests. The conflict probability can be used as an indicator of the degree of data
contention in the system. Other measures are CPU utilization and the abort with restart probability
(ARP). The CPU utilization gives the degree of resource contention at the base station. The ARP is
defined as the number of aborted transactions, which had been restarted due to lock conflict, over the total
number of transactions which have been restarted. It can be an indicator of the probability of deadline
missing due to transaction restart.

6.3. Simulation Results and Discussions

In the following sub-sections, we report the important simulation results obtained from the simulation

experiments. In each simulation run, the simulation time is 1,000sec. For a think time of 4 seconds, about
10,000 transactions are generated from the 84 mobile clients in each simulation run. The length of the
simulation is determined after a number of trial runs using different simulation lengths until stable results
are obtained.

6.3.1. Performance of the DHP-2PL

In this set of experiments, we compare the performance of the DHP-2PL with the distributed version
of HP-2PL in which the lock-holding transaction will be restarted when the priority of the lock-requesting
transaction is higher.

In Figure 6 (see Appendix A), we can see that the performance of the DHP-2PL is consistently better
than the HP-2PL at different transaction workloads. An increase in think time decreases the transaction
workload. The better performance of the DHP-2PL is due to its specific lock conflict resolution
mechanisms for mobile network: (1) priority inheritance for resolving the lock conflict where the lock
holding transaction is committing; and (2) cautious waiting for resolving the lock conflict where the lock
holding transaction is suspected to be a disconnected transaction. Although the probability of network
disconnection is very low as defined in the experiments, e.g., 0.5%, its impacts on system performance
can be very significant due to the chain of blocking effect. A disconnected transaction can block several
transactions directly and transitively. Consequently, all the blocked transactions may miss their deadlines.
The higher lock conflict probability can be observed in Figure 7 in which we can see that the conflict
probability of the DHP-2PL is consistently lower than that of the HP-2PL. We repeat the experiments for
a system where the deadline constraints of the transactions are tighter, e.g., the slack range is 20 to 25.
The results are shown in Figure 8. Consistent with the results in Figure 6, the miss rate of the DHP-2PL is
significantly lower than that of the HP-2PL for different values of think time.

6.3.2. Performance of the Transaction Shipping Approach

In this set of experiments, we study the performance of the transaction shipping approach (TS) as
compared with the query shipping approach (QS) at different return probabilities. The reason of not
comparing with the data shipping approach is that the data shipping approach may require the
transmission of large amount of data and is not suitable to MDRTDBS. Under the transaction shipping
approach, a transaction has to go back to its originating mobile client while it is executing when: (1) it has
to receive input data from the mobile client; or (2) the prediction at the pre-analysis phase is incorrect. For
both cases, the pre-analysis for the transaction has to be performed again at the mobile client.

In the experiments, the return probability defines the probability for which a transaction has to go
back to its originating mobile client after the completion of an operation. The value of return probability
depends on the accuracy of the prediction obtained at the pre-analysis phase and the dynamic behavior of
the transactions. When the return probability is set to be zero, it means that the prediction is correct, and
the transaction does not need to go back to the mobile client once it has been transmitted to the base

Concurrency Control in Mobile Distributed Real-Time Database Systems

279

station. If the return probability is set to be one, the prediction completely fails. Every time after an
operation has been completed, the transaction has to go back to the base station to refine the execution
path for its remaining operations.

Figure 9 shows the miss rates of the transactions shipping approach (TS) and the query shipping
approach (QS) at different return probabilities and when the channel connection times are 1 second (CL =
1) and 2 seconds (CL = 2). From the figure, it can be seen that the performance of the system is greatly
improved with the use of the transaction shipping approach, especially when the return probability is low
(a high accuracy of prediction in the pre-analysis phase). This is consistent with our expectation. Under
the transaction shipping approach, the number of communications required to process a transaction is
much reduced. Thus, the transactions can be completed earlier as the total mobile network delay is much
reduced. Even though a transaction has been restarted due to a lock conflict with a higher-priority
transaction, the restarted transaction still has a high probability to be completed before its deadline. Thus,
the abort with restart probability (ARP) is much lower under the transaction shipping approach than under
the query shipping approach as shown in Figure 10. With the use of transaction shipping approach, the
workload in the CPU is generally higher as some of the workload on the network is now shifted to the
base stations. Thus, we can see that the CPU utilization increases with a reduction in the return
probability as shown in Figure 11.

An important observation in Figure 9 is that even though the return probability is 1, e.g., the
prediction is wrong every time, the performance of the transaction shipping approach (TS) is still much
better than the query shipping approach (QS). It is due to the data pre-fetching mechanism in the
transaction shipping approach. Even though a wrong prediction has been made in the pre-analysis phase,
the system still can pre-fetch the required data of the next operation of the transaction based on the pre-
defined characteristics of the transaction. Thus, the number of communications between the base stations
and mobile clients is still much reduced.

As also can be observed in Figure 9, the improvement of using the transaction shipping approach is
smaller when the channel contention time is long and the return probability is high, e.g., CL = 2 and
return probability = 1. The reason is that at a higher channel contention, even with the use of the
transaction shipping approach, the transactions may still have a high probability of missing deadlines. As
shown in Figure 10, the abort with restart rate for the transaction shipping approach is higher at longer
channel connection time.

We repeat the experiments using a looser deadline constraint for the transactions, e.g., slack range is
20 – 25. The results are shown in Figure 12 to Figure 14. Consistent with the previous set of results, the
use of transaction shipping approach still can greatly improve the system performance when the
transactions have looser deadline constraints, e.g., more slack time for execution.

Figure 15 shows the impacts of different pre-analysis overheads (in terms of the amount of time) on
the miss rate under the transaction shipping approach when the return probabilities (RR) are 0.8 and 1.0.
One interesting observation is that the overheads do not have any significant effect on the performance of
the transaction shipping approach. Although the overheads may make the deadlines tighter, because of the
lengthened time required to complete a transaction, it also releases the degree of resource contention in
the system (the mobile network and the base stations), especially on the channels. It is because the
transactions now spend more time at the mobile client side, instead of at the mobile network and base
stations.

6.3.3. Performance of the Similarity-Based Protocols

Figure 16 shows the performance of the SDHP-2PL using the aggressive approach (SDHP-2PL-Ag)
and the conservative approach (SDHP-2PL-Con) at different similarity bounds. It is surprise to see that
for both SDHP-2PL-Ag and SDHP-2PL-Con relaxing the correctness of concurrency control to similarity
may not always improve the system performance. If the similarity bound is very small, e.g., ≤ 1 seconds,
the miss rates are even higher than the case where the similarity bound is zero, e.g. the protocol is reduced
to the DHP-2PL. The main reasons may be that:

(1) although relaxing the correctness criterion to similarity can increase the system concurrency, the

number of transaction restarts may be higher if the similarity bound is very small. More than one
transaction may be allowed to access a data items concurrency if they can pass the similarity test.
However, all of them may be restarted if they are not similar to a higher-priority transaction.

KAM-YIU LAM et al.

280

(2) The transaction restart overhead is very high in a mobile environment. The probability of deadline
missing will be much higher if a transaction is restarted.

As shown in Figure 16, the values of the similarity bounds of the data objects play an important role in

the effectiveness of using similarity for concurrency control. A significant amount of improvement is
achieved for larger similarity bounds, e.g., similarity bound ≥ 2 seconds. As expected, the improvement is
due to smaller blocking and restart probability. Smaller conflict probabilities can be observed in Figure 17
in which the conflict probability of both SDHP-2PL-Ag and SDHP-2PL-Con decreases with an increase
in similarity bound.

When we compare the performance of the SDHP-2PL-Ag with SDHP-2PL-Con, we can see that in
general SDHP-2PL-Con gives a better performance although their performance is very similar especially
when the similarity bound is very small and very large. The main reason of the slightly poor performance
of the SDHP-2PL-Ag is due to the heavy restart overhead. In the SDHP-2PL-Ag, a lower-priority
transaction will be restarted if the priority of the lock requesting transaction higher. The restarted
transaction will have a high probability of miss its deadline. As shown in Figure 18, the abort with restart
probability is higher in the SDHP-2PL-Ag than that in the SDHP-2PL-Con. When the similar bound is
large, the performance of SDHP-2PL-Ag and SDHP-2PL-Con becomes very similar as most of the
conflicts are resolved by similarity.

7. CONCLUSIONS

The design of mobile distributed real-time database systems (MDRTDBS) is receiving growing

interests in recent years. Due to the poor quality of services provided by a mobile network, it is not easy
to meet the deadlines of the transactions in a MDRTDBS. In this paper, we define a detailed model for
MDRTDBS, in which the mobility of the mobile clients and characteristics of the mobile network, e.g.,
disconnection and low bandwidth, are modeled explicitly. We have designed a distributed real-time
locking protocol, called Distributed High Priority Two Phase Locking (DHP-2PL), where the
characteristics of the mobile network are considered in resolving the conflicts in data accesses. Then, we
propose two strategies to improve the system performance and to reduce the impact of mobile network on
the performance of the adopted concurrency control protocol. We first propose the concept of transaction
shipping to reduce the dependency of a concurrency control protocol on the performance of the
underlying network. With the transaction shipping approach, the communication overheads for processing
a transaction can be much reduced. A data pre-fetching mechanism is included in the transaction shipping
approach to deal with the dynamic properties of transactions and inaccuracy of prediction in the pre-
analysis. We then adopt the notion of similarity to resolve conflicts among data access that can be very
costly over a mobile network. Different issues in the design of similarity-based real-time locking protocol
are discussed. In the design of similarity-based locking protocol, special attention should be paid in
resolving a lock conflict in which some of the lock holders are similar to the lock requester while some of
them are not. Two methods, the aggressive and conservative approaches, are suggested to resolve the
conflicts.

Simulation experiments have been conducted to investigate the performance of the DHP-2PL
protocol, the effectiveness of the transaction shipping approach and the similarity-based protocols. With
the transaction shipping approach, the number of deadline violations is greatly reduced as the contention
for channels, the time spent on communication, the probability of lock conflict, and the amount of
resources wasted on restarted transactions are much reduced. The transaction shipping approach can also
help balance the workload in the system (between the channels and the base stations). The use of
similarity-based algorithm further improves the system performance by reducing the number of lock
conflicts. However, the experimental results show that the effectiveness of similarity depends very much
on the values of the similarity bounds.

Acknowledgements �7KH�ZRUN�UHSRUWHG�LQ�WKLV�SDSHU�ZDV�VXSSRUWHG�LQ�SDUW�E\�UHVHDUFK�JUDQWV�16&��-2213-E194-002 of Taiwan
National Science Council, the Hong Kong RGC CERG 9040353, Strategic Grants 700584 and 7000849 of City University of Hong
Kong.

Concurrency Control in Mobile Distributed Real-Time Database Systems

281

REFERENCES

[1] R.J. Abbott and H. Garcia-Molina. Scheduling real-time transactions: a performance evaluation. ACM Transactions on
Database Systems, 17(3):513-560 (1992).

[2] J.Y. Chung, J.W.S. Liu, and K.J. Lin. Scheduling periodic jobs that allow imprecise results. IEEE Transactions on
Computers, 39(9):252-260 (1990).

[3] A. Datta, A. Celik, J. Kim, and D.E. VanderMeer. Adaptive broadcast protocol to support power conservant retrieval by
mobile users. In Proceedings of 13th International Conference on Data Engineering, Birmingham, UK, pp. 124-133, IEEE
Computer Society Press (1997).

[4] A. Datta, S. Mukherjee, P. Konana, I. Viguier, and A. Bajaj. Multiclass transaction scheduling and overload management in
firm real-time database systems. Information Systems, 21(1):29-54 (1996).

[5] M.J. Franklin. Client Data Caching: A Foundation for High Performance Object Database Systems, Kluwer Academic
Publishers, Boston (1996).

[6] J. Gray and A. Reuter. Transaction Processing: Concept and Techniques. Morgan Kaufmann (1993).

[7] S.J. Ho, T.W. Kuo, and A.K. Mok. Similarity-Based Load Adjustment for Real-Time Data-Intensive Applications. In
Proceedings of IEEE 18th Real-Time Systems Symposium, San Francisco, pp.144-153, IEEE Computer Society Press (1997).

[8] J.R. Haritsa, M. Livny, M.J. Carey. On Being Optimistic about Real-Time Constraints. In Proceedings of the 9th ACM
Symposium on Principles of Database Systems, Nashville, pp. 313-343, ACM Press (1990).

[9] J. Huang, J. Stankovic and K. Ramamritham. Priority Inheritance in Soft Real-Time Databases. Journal of Real-Time
Systems, 4(3):243-268 (1992).

[10] T. Imielinski and B.R. Badrinath. Mobile wireless computing: challenges in data management. Communications of ACM,
37(10):18-28 (1994).

[11] Y..K. Kim and S.H. Son. Supporting Predictability in Real-Time Database Systems. In Proceedings of Real-Time Technology
and Applications Symposium, Brookine, Massachusetts, pp. 38-48, IEEE Computer Society Press (1996).

[12] T.W. Kuo and A.K. Mok. Application Semantics and Concurrency Control of Real-Time Data-Intensive Applications. In
Proceedings of IEEE 13th Real-Time Systems Symposium, Phoenix, pp. 35-45, IEEE Computer Society Press (1992).

[13] T.W. Kuo and A.K. Mok. SSP: a Semantics-Based Protocol for Real-Time Data Access. In Proceedings of IEEE 14th Real-
Time Systems Symposium, Durham, pp. 76-86, IEEE Computer Society Press (1993).

[14] E. Kayan and O. Ulusoy. An Evaluation of Real-Time Transaction Management Issues in Mobile Database Systems. The
Computer Journal, 42(6):501:510 (1999).

[15] C. Lai. Optimistic Similarity-Based Real-Time Concurrency Control. In Proceedings of IEEE Real-Time Technology and
Applications Symposium, Denver, pp.189-198, IEEE Computer Society Press (1998).

[16] W.C.Y. Lee, Mobile Cellular Telecommunications Systems, New York, McGraw-Hill (1989).

[17] K.W. Lam, K.Y. Lam and S.L. Hung. Distributed Real-time Optimistic Concurrency Control Protocol. In Proceedings of
International Workshop on Parallel and Distributed Real-time Systems, Hawaii, pp. 122-125, IEEE Computer Society Press
(1996).

[18] V.C.S. Lee, K.-Y. Lam, and B. Kao. Priority Scheduling of Transactions in Distributed Real-time Databases. Journal of Real-
time Systems, 15(1):31-61 (1998).

[19] K.J. Lin, S. Natarajan, and J.W.-S. Liu. Imprecise Results: Utilizing Partial Computations in Real-Time Systems. In
Proceedings of IEEE 8th Real-Time Systems Symposium, San Jose, pp. 210-217, IEEE Computer Society Press (1987).

[20] J. Lee and S.H. Son. Dynamic Adjustment of Serialization Order for Real-time Database Systems. In Proceedings of 14th
IEEE Real-time Systems Symposium, Durham, North Carolina, pp. 66-75, IEEE Computer Society Press (1993).

[21] H.V. Leong and A. Si. Database Caching over the Air Storage. The Computer Journal, 40(7):401-415 (1997).

[22] OPNET Modeler/Radio 3.0.B©, MIL 3, Inc. (1996).

[23] P. O’Neil, K. Ramamritham, and C. Pu. A Two-Phase Approach to Predictably Scheduling Real-time Transactions. In
Performance of Concurrency Control Mechanisms in Centralized Database Systems, edited by V. Kumar, Prentice Hall, New
Jersey (1996).

[24] G. Ozsoyoglu and R. Snodgrass. Temporal and Real-Time Databases: A Survey. IEEE Transactions on Knowledge and Data
Engineering, 7(4):513-532 (1995).

[25] E. Pitoura and B. Bhargava. Dealing with Mobility: Issues and Research Challenges. Technical Report, Purdue University
(1993).

[26] C. Pu and A. Leff, Autonomous Transaction Execution with Epsilon Serializability. In Proceedings of 1992 RIDE Workshop
on Transactions and Query Processing, Tempe, Arizona, pp. 2-11, IEEE Computer Society Press (1992).

[27] K. Ramamritham. Real-time Databases. International Journal of Distributed and Parallel Databases, 1(2):199-226 (1993).

[28] L. Sha, R. Rajkumar, S.H. Son and C.H. Chang. A Real-time Locking Protocol. IEEE Transactions on Computers, 40(7):793-
800 (1991).

[29] S.H. Son, S. Park and Y Lin. An Integrated Real-time Locking Protocol. In Proceedings of the International Conference on
Data Engineering, Tempe, Arizona, pp. 527-534, IEEE Computer Society Press (1992).

KAM-YIU LAM et al.

282

[30] O. Ulusoy and G.G. Belford. Real-time Transaction Scheduling in Database Systems. Information Systems, 18(8):559-580
(1993).

[31] O. Ulusoy. A Study of Two Transaction Processing Architectures for Distributed Real-time Database Systems. Journal of
Systems and Software, 31(2):97-108 (1995).

[32] O. Ulusoy. Real-Time Data Management for Mobile Computing. In Proceedings of International Workshop on Issues and
Applications of Database Technology (IADT’98), Berlin, Germany, pp. 233-240, Idea Group Publishing (1998).

[33] O. Ulusoy and A. Buchmann. A Real-Time Concurrency Control Protocol for Main-Memory Database Systems. Information
Systems, 23(2):109-125 (1998).

[34] P.S. Yu, K.L. Wu, K.J. Lin, and S.H.Son. On Real-Time Databases: Concurrency Control and Scheduling. In Proceedings of
IEEE, 82(1):140-57 (1994).

[35] P. Xuan, O. Gonzalez, J. Fernandez, and K. Ramamritham. Broadcast on Demand: Efficient and Timely Dissemination of
Data in Mobile Environments. In Proceedings of 3rd IEEE Real-Time Technology Application Symposium, Montreal, pp. 38-
48, IEEE Computer Society Press (1997).

[36] M. Xiong, K. Ramamritham, R. Sivasankaran, J.A. Stankovic, and D. Towsley. Scheduling Transactions with Temporal
Constraints: Exploiting Data Semantics. In Proceedings of IEEE Real-Time Systems Symposium, Washington, D.C., pp. 240-
251, IEEE Computer Society Press (1996).

APPENDIX A: FIGURES

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

Think time (sec)

DHP-2PL

HP-2PLM
is

s
R

at
e

(%
)

Fig. 6: Impact of Think Time on Miss Rate

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Think Time (sec)

DHP-2PL

HP-2PL

C
on

fli
ct

 P
ro

ba
bi

lit
y

(%
)

Fig. 7: Impact of Think Time on Conflict Probability

Concurrency Control in Mobile Distributed Real-Time Database Systems

283

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

Think time (sec)

DHP-2PL

HP-2PL

M
is

s
R

at
e

(%
)

Fig. 8: Impact of Think Time on Miss Rate When the Slack Bound Is 25- 20

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Return Probability

TS (CL=2)
QS (CL=2)
TS (CL=1)
QS (CL=1)

M
is

s
R

at
e

(%
)

Fig. 9: Impact of Return Probability on Miss Rate

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Return Probability

TS (CL=2)
QS (CL=2)
TS (CL=1)
QS (CL=1)

A
bo

rt
 w

ith
 R

es
ta

rt
 P

ro
ba

bi
lit

y
(%

)

KAM-YIU LAM et al.

284

Fig. 10: Impact of Return Probability on Abort with Restart Probability

0

5

10

15

20

25

30

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Return Probability

TS (CL=2)
QS (CL=2)
TS (CL=1)
QS (CL=1)

C
P

U
 U

til
iz

at
io

n
(%

)

Fig. 11: Impact of Return Probability on CPU Utilization

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Return Probability

TS (S:20-10)
QS (S:20-10)
TS (S:20-25)
QS (S:20-25)

M
is

s
R

at
e

(%
)

Fig. 12: Impact of Return Probability on Miss Rate

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Return Probability

TS (S:20-10)

QS (S:20-10)
TS (S:20-25)

QS (S:20-25)

A
bo

rt
 w

ith
 R

es
ta

rt
 P

ro
ba

bi
lit

y
(%

)

Fig. 13: Impact of Return Probability on Abort with Restart Probability

Concurrency Control in Mobile Distributed Real-Time Database Systems

285

0

5

10

15

20

25

30

35

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Return Probability

TS (S:20-10)

QS (S:20-10)

TS (S:20-25)

QS (S:20-25)

C
P

U
 U

til
iz

at
io

n
(%

)

Fig. 14: Impact of Return Probability on CPU Utilization

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

Pre-analysis Overhead (msec)

RR=1.0

RR=0.8

M
is

s
R

at
e

(%
)

Fig. 15: Impact of Pre-Analysis Overhead

�

�

�

�

�

��

��

��

��

��

��

� � � � �

6LPLODULW\�%RXQG��VHF�

6'+3��3/�&RQ

6'+3�63/�$J

0
LV
V�
5
D
WH
��
�
�

Fig. 16: Impact of Similarity Bound on Miss Rate

KAM-YIU LAM et al.

286

�

�

��

��

��

��

��

��

��

� � � � �

6LPLODULW\�%RXQG��VHF�

6'+3��3/�&RQ

6'+3�63/�$J

&
R
Q
IOL
FW
�3
UR
E
D
E
LOL
W\
��
�
��

Fig. 17: Impact of Similarity Bound on Conflict Probability

�

�

��

��

��

��

��

��

��

� � � � �

6LPLODULW\�%RXQG��VHF�

6'+3��3/�&RQ
6'+3�63/�$J

$
E
R
UW
�Z
LWK
�5
H
VW
D
UW
�3
UR
E
D
E
LOL
W\
��
�
�

Fig. 18: Impact of Similarity Bound on Abort with Restart Probability

