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Abstract � :LWK� WKH� UDSLG� DGYDQFHV� LQ� PRELOH� FRPSXWLQJ� WHFKQRORJ\�� WKHUH� LV� DQ� LQFUHDVLQJ� GHPDQG� IRU�
processing real-time transactions in a mobile environment. This paper studies concurrency control problem in 
mobile distributed real-time database systems (MDRTDBS). Based on the High Priority Two Phase Locking (HP-
2PL) scheme, we propose a distributed real-time locking protocol, called Distributed High Priority Two Phase 
Locking (DHP-2PL), for MDRTDBS. In the protocol, the characteristics of a mobile computing system are 
considered in resolving lock conflicts. Two strategies are proposed to further improve the system performance and 
to reduce the impact of mobile network on the performance of the DHP-2PL: (1) A transaction shipping approach 
is proposed to process transactions in a mobile environment by exploring the well-defined behavior of real-time 
transactions. (2) We explore the application semantics of real-time database applications by adopting the notion of 
similarity in concurrency control to further reduce the number of transaction restarts due to priority inversion, 
which could be very costly in a mobile network. A detailed simulation model of a MDRTDBS has been 
developed, and a series of simulation experiments have been conducted to evaluate the performance of the 
proposed approaches and the effectiveness of using similarity for concurrency control in MDRTDBS. 
© 2000 Elsevier Science Ltd. All rights reserved 
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1. INTRODUCTION 

 
Recent advances in wireless communication technology have made mobile information services a 

reality [9, 10, 25]. A number of novel mobile computing systems, such as tele-medicine systems, real-
time traffic information and navigation systems, and mobile Internet stock trading systems, are emerging 
as mobile users require instant access to information using their palmtops, personal digital assistant 
(PDA) and notebook computers. Mobile computing technology not just only improves the distribution 
and flow of information, but at the same time, it also greatly increases the functionality of real-time 
database applications. The realization of “instant” information access over a mobile network relies on 
real-time processing of transactions and it makes the timeliness of data accesses an important issue. As a 
result, research on processing soft real-time transactions in mobile distributed real-time database systems 
(MDRTDBS) is receiving growing attention in recent years [3, 14, 21, 32, 35]. 

Owing to the intrinsic limitations of mobile computing systems, such as limited bandwidth and 
frequent disconnection, the design of an efficient and cost-effective MDRTDBS requires techniques that 
are quite different from that in distributed real-time database systems (DRTDBS) which are supported 
with wired networks [18]. It is much more difficult to meet transaction deadlines in a mobile environment 
as there exist various factors, such as network performance, concurrency control and transaction 
scheduling, which can seriously affect the transaction performance. Two of the most important 
performance objectives are how to meet the urgency of transactions and how to satisfy the temporal 
constraints of database, where temporal constraints refer to the freshness of data objects in the database 
[27]. Many real-time database applications are used to monitor the status of the objects in the external 
environment and they must generate timely responses to critical events. For example, in a stock trading 
system, a late response to a stock analysis transaction may result in a loss of a good trading opportunity. 
The consequence of missing a transaction deadline in a tele-medicine system for ambulance services may 
result in a loss of a human life. 
                                                           

†Recommended by Patrick O’Neil 
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One of the most important issues to ensure timeliness of transaction execution is concurrency control. 
However, the concurrency control protocols for conventional database systems are not suitable to real-
time database systems. Real-time transactions are critical and have to be scheduled to meet their 
deadlines. Conventional concurrency control protocols, such as two phase locking (2PL) and optimistic 
concurrency control method [6], often schedule transactions on an equal basis. Higher-priority 
transactions may suffer from an unlimited amount of priority inversion time, where priority inversion is a 
situation in which a higher-priority transaction is blocked by a lower-priority transaction [28]. In the past 
decade, researchers have proposed various real-time concurrency control protocols, e.g., [1, 8, 24, 29, 28, 
30, 36], for single-site as well as distributed RTDBS. In particular, [8, 28] proposed the idea of priority 
inheritance, which lets a lower-priority transaction inherit the priority of a higher-priority transaction 
which is blocked by the lower-priority transaction, to reduce the number of priority inversions of the 
higher-priority transaction. 

The priority inversion problem may also be resolved by transaction restart. The High Priority Two 
Phase Locking (HP-2PL) protocol [1] restarts a lower-priority transaction if a higher-priority transaction 
wants to set a lock which is held by the lower-priority transaction. The priority inversion problem, in 
general, is also resolved by transaction restart in the optimistic concurrency control protocols. In the 
optimistic concurrency control with wait 50 (OCC-wait 50) [8], the execution of a transaction is divided 
into three phases: the read phase, the execution phase and the validation phase. Data conflicts amongst 
different transactions will be resolved when one of them enters the validation phase. If the number of 
conflicting transactions, which priorities are higher than the validating transaction, is not greater than 
50% of the total number of conflicting transactions, all the conflicting transactions will be restarted and 
the validating transaction is allowed to enter the write phase and then commit. Otherwise, the validating 
transaction will be blocked. 

Although many researchers, e.g., [1, 8, 9, 13, 24, 28, 36], have done excellent research in concurrency 
control for single-site and distributed RTDBS, there is little work in concurrency control for MDRTDBS 
which is a fast growing and important area. In a MDRTDBS, the mobile network imposes a serious time 
burden on the performance of a MDRTDBS and it also can seriously affect the performance of the 
adopted concurrency control protocol. Although the concurrency control protocols proposed for 
DRTDBS can be extended for MDRTDBS, their performance may be very different from that in a 
DRTDBS [31], due to the unique characteristics of mobile network.  

Compared to wired networks, mobile networks are much slow, unreliable, and unpredictable. The 
mobility of clients affects the distribution of workload in the network and the system. Disconnection 
between mobile clients and base stations is common [9]. It can seriously affect the probability of data 
conflicts and the deadline missing probability. The poor quality of services provided by a mobile network 
can also seriously increase the overheads and affect the effectiveness of a concurrency control protocol in 
resolving data conflicts [32] as the transactions now require a longer time for completion. 

In this paper, we study concurrency control for MDRTDBS. Based on the High Priority Two Phase 
Locking (HP-2PL) scheme [1], the Distributed HP-2PL (DHP-2PL) protocol is proposed for MDRTDBS. 
We consider transactions, which are simple flat transactions with read and write operations. This 
assumption on transaction structure is reasonable for many mobile soft (and firm) real-time applications 
with web-oriented interfaces, especially for applications running on mobile palmtop computers such as 
stock monitor systems and traffic information systems. The simplification of transaction behavior and 
characteristics may result in good strategies in designing real-time transaction scheduling algorithms to 
improve the system performance. Two new strategies are proposed to further improve the performance of 
the DHP-2PL. We first propose the transaction shipping approach to reduce the performance dependency 
of a concurrency control protocol on the performance of the underlying mobile network. We then adopt 
the notion of similarity to resolve data conflicts, which can be very costly in a mobile environment. 
Different issues in the design of the similarity-based concurrency control protocol are suggested. A 
detailed model of a MDRTDBS has been developed, and a series of simulation experiments is conducted 
to demonstrate the capability of the proposed approaches, for which we have obtained very encouraging 
results. 

The main contributions of the paper are: (1) To our best knowledge, this is one of the first papers on 
concurrency control for MDRTDBS with a detail performance study. (2) We have designed a distributed 
real-time locking protocol in which the characteristics of a MDRTDBS are considered for resolving lock 
conflicts. (3) A transaction shipping approach is proposed to reduce the impact of mobile network on the 
system performance and the performance of the real-time locking protocol. Different issues in the 
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implementation of the transaction shipping approach are discussed in details. (4) We have extended our 
real-time locking protocol to be a similarity-based protocol. Different issues in the design of the real-time 
similarity-based protocols are suggested. (5) A detailed simulation model is developed, in which the 
mechanisms in mobile communications such as mobility of clients and disconnection, and real-time 
transaction processing, are included. (6) Simulation experiments have been performed to investigate the 
performance of the proposed protocols and approaches, and the effectiveness of using similarity as the 
correctness criterion for concurrency control in MDRTDBS. 

The rest of this paper is organized as follows: In Section 2, a model of MDRTDBS is defined. In 
Section 3, the concurrency control protocol for MDRTDBS is discussed, and the DHP-2PL is introduced. 
In Section 4, the transaction shipping approach for MDRTDBS is introduced. In Section 5, the notion of 
similarity is applied for concurrency control in MDRTDBS, and a similarity-based real-time locking 
protocol is proposed based on the DHP-2PL. In Section 6, the performance MDRTDBS model is 
described. The baseline setting, the parameters, and the performance measures are given. The simulation 
results are presented with discussions. Finally, the conclusions and future research directions are given in 
Section 7. 

 
2. MODEL OF A MOBILE DISTRIBUTED REAL-TIME DATABASE SYSTEM 

 
2.1.  System Architecture 
  

A MDRTDBS consists of four major components: the mobile clients (MCs), the base stations, the 
mobile network, and the main terminal switching office (MTSO) [16, 22], as shown in Figure 1. The 
mobile network is assumed to be a radio cellular network and the entire service area is divided into a 
number of connected cell sites. Within each cell site, there is a base station, which is augmented with a 
wireless interface to communicate with the MCs within its cell site. The cellular radio network is assumed 
to be the Global Systems for Mobile Communication (GSM) 900† in which two sub-bands of 25 MHz 
each are defined. One of the sub-bands is 890 to 915 MHz and is for uplink (for the mobile clients to 
transmit signals to the base station). Another sub-band is 935 to 960 MHz and is for downlink. Within 
each sub-band, a number of channels are defined for transmitting radio signals which can be data or 
control signals. Each channel is divided into several time frames by using the time division multiple 
access (TDMA) method. Usually, the data transmission rate of a channel is between 9.6 to 14.4 Kbps‡. 

The base stations at different cell sites are connected to the MTSO by a point-to-point wired network. 
Thus, the communications between the base stations and the MTSO are much more efficient and reliable 
than the communications between the base stations and the mobile clients. The MTSO is responsible for 
active call information maintenance, performance of handoff procedure, channel allocation, and message 
routing. Attached to each base station is a real-time database system containing a local database which 
may be accessed by transactions issued by the MCs within the cell site or from other cell sites via the 
MTSO. 

An MC may move around within the same cell site or cross the cell border into another cell site. 
Periodically, it sends a location signal to its base station through an uplink channel. The strength of signal 
received by a base station depends on several factors, such as the distance between the MC and the base 
station, and the surrounding buildings. When an MC is crossing the cell border, the strength of signal 
received by a base station will become very weak. If the strength of the signal is lower than a certain 
threshold level, the MTSO will be notified, and then the MTSO will perform a handoff procedure. It 
sends out requests to all the base stations, and the base stations respond by returning the strength of the 
location signals received from the MC. The MTSO will then assign the MC to the base station, which has 
received the strongest signal. Usually, this is the base station, which is responsible for the cell site where 
the MC is entering.  
 
 

                                                           
†In this paper, we focus our discussions on concurrency control of data access over a radio cellular network although there exist 

several other mobile communication technologies such as satellite and wireless ATM. They are much more expensive. 
‡Although the cellular radio network technologies are improving, and different new standards such as GSM 1800 and DCS 

1800, which can support more channels, are emerging, the bandwidth is still a great concern in a cellular radio network. 
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Fig. 1: System Architecture of the Mobile Distributed Real-Time Database System 

 
An MC transaction may need to access databases located at several base stations. The MC first issues 

a call request to the base station of its current cell site. A channel is granted to the MC after the 
completion of a set-up procedure. The execution of the setup procedure incurs a fixed overhead as it 
involves communications amongst the MC, the base station, and the MTSO. Since the number of 
channels between a base station and its MCs is limited, it is possible that the channel request may be 
refused due to unavailability of free channels. The queuing for channels is according to the priorities of 
the transactions. If the number of attempts exceeds a specific maximum number, the channel request and 
the requesting transaction will be aborted. Due to channel contention and slow (and unreliable) 
communication, the time required to establish a channel is unpredictable. Once a channel has been 
established, the transaction will be sent out through the RF transmitter from the MC to the base station. 
When an MC is crossing the cell site border while it is communicating with its base station, a new 
channel will be created by the MTSO with its newly assigned base station after a setup procedure is 
completed. However, it is possible that there is no free channel available at the new cell site. In this case, 
it will retry for a number of times. If it is still not able to get a channel, the transaction will be aborted. 
Due to noise and interference, the signal, which carries data, may be corrupted while it is being 
transmitted. In this case, the data will be re-transmitted. If the transmission of signals is corrupted 
consistently after several times, a disconnection may have occurred. For that case, the transaction may 
need to wait until a new channel is granted before it can proceed. Because of high error rate and non-
stability of signal transmission, the effective data transmission rate is unpredictable. 

 
2.2.  Database and Transaction Models 

 
The entire database is partitioned into local databases and distributed at different base stations. The 

databases consist of two types of data objects: temporal and non-temporal. Temporal data objects are 
used to record the status of the objects in the external environment. Each temporal data object is 
associated with a timestamp, which denotes the age of the data object. If a transaction may update a 
temporal data object, then the transaction is given a timestamp when it is initiated. If the transaction 
commits successfully before its deadline, the timestamp of any data object, which is updated by the 
transaction, will be set as the timestamp of the transaction.  

The validity of a temporal data object is defined by an absolute validity interval (avi) [27, 36]. A 
temporal data object satisfies the avi constraint if its age is up to date, i.e., the difference of the current 
time and the age is no more than the avi. A relative validity interval (rvi) may be given to a transaction 
which requires that the maximum age difference of the data objects read by the transaction is not larger 
than rvi [27, 36]. Non-temporal data objects are either derived by operations of transactions or are 
statically set during system initialization. 
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Transactions from the MCs are assumed to be simple flat transactions with a collection of read and 
write operations [6]. In between the operations of a transaction, control statements may be defined to 
control the logic flow of the transaction.  Examples of such application systems are jockey-club betting 
systems, Internet programmed stock trading systems, traffic navigation and information systems, etc. 

Each transaction is given a deadline and a criticality. The priority of a transaction is derived based on 
its deadline and criticality. It is assumed that the EDF algorithm is used for scheduling the transactions in 
using the CPU. It is assumed that the transactions are firm real-time [34]. If the system cannot complete a 
transaction before its deadline, the transaction will be aborted. Operations may access data objects 
residing at different base stations. Thus, a transaction may have several processes, called transaction 
processes, at different base stations for its execution. When an operation of a transaction accesses a data 
object residing at another base station, the operation will be routed to the base station via the MTSO and a 
new transaction process will be created if there is no process at that site for the transaction. When all the 
operations of a transaction have been processed, a commit protocol will be performed to ensure the failure 
atomicity of the transaction processes of the transaction. It is assumed that the well-known two phase 
commit protocol is adopted because of its simplicity and well-known performance characteristics† [6]. 

 
3. CONCURRENCY CONTROL PROTOCOL FOR MDRTDBS 

 
In the design of concurrency control protocols for MDRTDBS, there are two important 

considerations: (1) how to minimize the cost and overheads for resolving data conflicts; and (2) how to 
minimize the impact of mobile network on the performance of the protocol. Restarting a transaction is 
highly expensive in a mobile environment. Although priority inheritance [8] is effective in managing the 
priority inversion problem in single-site RTDBS, it may not be effective in a MDRTDBS due to the slow 
network. It may take a long time before the priority of a transaction is “inherited”. Furthermore, deadlock 
is possible when priority inheritance is used. Deadlock is highly undesirable to real-time systems, 
especially in a distributed environment. It is not only because it greatly increases the response time of 
(deadlocked and other affected) transactions, it also wastes a lot of system resources. The detection and 
resolution of a deadlock in a distributed environment may also consume a lot of resources. The most 
common method for distributed deadlock resolution is time-out, which is obviously not suitable to 
RTDBS due to the difficulty in determining the appropriate timeout period. 

Although the optimistic concurrency control protocols have been shown to give a good performance 
in single-site RTDBS [8, 20], they may not be suitable to MDRTDBS. The validation test required in the 
optimistic concurrency control protocols can be very complex in a distributed environment [17], and it 
will be more complicated in a mobile network.  

For the purpose of this paper, we choose to adopt a lock-based approach in which both transaction 
restart and priority inheritance are used to resolve the problem of priority inversion. By extending the 
well-known HP-2PL [1], a distributed extension of HP-2PL, called Distributed HP-2PL (DHP-2PL), is 
proposed for MDRTDBS. In the protocol, special considerations are paid on the characteristics of the 
mobile network, e.g. low bandwidth and frequent disconnection. For example, special attention is given 
on how to reduce the number of transaction restarts, which can be very costly due to the low bandwidth. 
If a transaction is committing, it will not be restarted even if it has a lock conflict with a higher-priority 
transaction. Instead, priority inheritance is used to reduce the blocking time of the higher-priority 
transaction. Priority inheritance is applied to the transaction process of the lock-holding transaction at the 
conflicting site. So, the time required to raise up the priority of a transaction process can be very short. 
Unlike many other lock-based protocols, such as those simply adopt priority inheritance, DHP-2PL is free 
of deadlock as priority inheritance is only restricted for resolving lock conflict with committing 
transactions.  

As we can see in the model description in Section 2, the system consists of both a mobile network 
(connecting the mobile clients and the base stations) and a reliable wired network (connecting the base 
stations and MTSO). Since mobile network is vulnerable to disconnection, strategies for resolving data 
conflict should consider the network quality connecting the conflicting transactions. A different strategy 
should be used if a mobile network instead of a reliable wired network connects the conflicting 

                                                           
†Other real-time commit protocol may be used [Gupt96, Gupt97]. However, in here, we assume a non-real-time commit 

protocol in order to simplify the analysis. 
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transactions especially when it is suspected that disconnection may have occurred. In the DHP-2PL, a 
cautious waiting scheme is included to resolve this kind of lock conflicts. 

DHP-2PL is a distributed locking protocol. The local database system at each base station has a lock 
scheduler, which manages the lock requests for the data objects residing at the base station. The definition 
of the DHP-2PL is as follows, where Tr and Th are the lock-requesting transaction and the lock-holding 
transaction, respectively: 
 

Lock Conflcit (Tr, Th) 
Begin  
 If  Priority(Tr) > Priority(Th) 

   If  Th is not committing  
    If  Th is a local transaction 
     Restart Th locally 
    Else 
     Restart Th globally 
    Endif 
   Else 
    Block Tr until Th releases the lock 
    Priority(Th):= Priority(Tr) + fixed priority level 
   Endif 
  Else 
   Block Tr until Th releases the lock 
  Endif 

End 
 

A transaction is local if it only accesses data objects resided at one base station. Otherwise, it is a 
global transaction. Similar to the HP-2PL, the DHP-2PL uses a transaction restart mechanism to resolve 
lock conflicts between non-committing transactions. Restarting a local transaction is simply done by 
restarting the transaction process at the conflicting base station. To restart a global transaction, restart 
messages are sent to the base stations where some operations of the global transactions are executing or 
have executed. Global restart takes a much longer time and requires much higher overheads. Thus, the 
number of transaction restarts, especially a global one, should be minimized. A reasonable approach is to 
allow a committing transaction to hold a lock until it has finished the commit procedure even though a 
higher-priority transaction is requesting the lock. Although this approach may create the priority inversion 
problem, the blocking time of the higher-priority transaction will not be long if the committing 
transaction is assigned a sufficiently high priority by using priority inheritance. The priority of the 
committing transaction will be raised up by two factors. Firstly, its priority will be at least as high as the 
highest priority of all of its blocked transactions, and, secondly, a fixed priority level should be added to 
its priority to make it even higher than all other executing transactions. The purpose is to finish the 
committing transaction as soon as possible. The time required to raise up the priority of a transaction 
process should be very short as both conflicting processes are located at the same site. No deadlock is 
possible for the priority raising of any committing transaction. It is because the committing transaction 
will not be blocked by any other executing transaction as it will not make any lock request during its 
commitment. 

A common characteristic of mobile networks is that disconnection between a mobile client and its 
base station is common. In processing a transaction, the control of a transaction may flow between its 
processes at the base stations and the process at its originating mobile client. In case a disconnection 
occurs while a transaction is locating at the mobile client (the control flow of the transaction is at the 
mobile client), the impact of the disconnection on the system performance can be very serious due to 
chain of blocking. It does not only greatly increase the deadline missing probability of the disconnected 
transaction, other transactions, which are directly or transitively blocked by the disconnected transaction, 
will also be affected. The result may be fruitless blocking which is a situation where a blocked transaction 
is finally aborted due to deadline missing. In the above protocol, the problem of fruitless blocking may 
occur when a lower-priority transaction is blocked by a higher-priority transaction which is a 
disconnected transaction. To minimize the impact of disconnection and the probability of fruitless 
blocking due to disconnection, we may use a cautious waiting scheme in which a higher-priority 
transaction is restarted by a lower-priority transaction due to data conflict if the higher-priority transaction 
is suspected to be a disconnected transaction.  
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Let each executing transaction process be associated with a location indicator. When a transaction is at 
the mobile client or it is waiting to move back to the mobile client, the location indicator of its processes 
will be set as “mobile client”. Otherwise, it is set as “base station”. When the location indicator of a 
transaction process is “mobile client”, the transaction is vulnerable to disconnection. The following 
summarizes how the cautious waiting scheme is incorporated into the DHP-2PL: 

 
If (the priority of the lock-requester > the priority of the lock-holder )  and  
 (the lock-holder is not committing) 
 Restart the lock-holder (globally or locally, depending on the type of the transaction) 
Else 
 If  location indicator of the lock-holder is “mobile client” 
  If  the time already spent at the client side > threshold 
   Ping the mobile client where the lock-holder is residing 

//* the base station sends a message to the mobile client 
   to test whether the mobile client is disconnected or not *// 
   If no response from the mobile client 
     Restart lock-holder 
   Else 

   Block the lock-requester 
  //* repeat the checking after another threshold *// 
  Endif 

  Else 
   Block the lock-requester 

 //* the checking will be performed again when the time already spent 
at the client side is greater than the threshold value *// 

  Endif 
 Else 
  Block the lock-requester. 

Endif 
Endif 

 
The threshold is a tuning parameter. It is a function of the average performance of the mobile network 

under normal situations. If a transaction has been at the mobile client for a long time, e.g., greater than the 
threshold value, and its base station cannot communicate with the mobile client currently, disconnection 
is assumed. The lock-holding transaction will be restarted even though its priority is higher than the 
priority of the lock-requesting transaction. Although restarting the lock-holding transaction will make it 
have a high probability of missing deadline, the restart will not affect the system performance 
significantly as the lock-holding transaction is likely to miss its deadline due to disconnection. On the 
other hand, restarting the lock-holding transaction can increase the chance of meeting the deadline of the 
lock-requesting transaction. Otherwise, it is highly possible that both of them will miss their deadlines. 
Note that simply making the assumption of disconnection based on pinging the mobile client may not be 
sufficient as mobile networks are subjected to different transient communication failures, which are much 
less harmful than disconnection. A transient communication failure will only last for a very short time and 
can usually be solved by data retransmission.  

 
4. STRATEGIES FOR PROCESSING TRANSACTIONS IN MDRTDBS 

 
In this section, we discuss different strategies for processing transactions in a MDRTDBS. A new 

approach, called transaction shipping, is proposed. The goal of the transaction shipping approach is to 
reduce the impact of mobile network on the performance of the DHP-2PL and to improve the system 
performance. 

 
4.1.  Data Shipping and Query Shipping 
  

There are two well-known approaches for processing transactions in a client-server database system: 
query shipping and data shipping [5]. In the data shipping approach, a transaction initiated by a client will 
be processed at the client. While the transaction is processing, the client sends data requests, which are 
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required by the transaction, to the database server. The server responds to the requests by sending the 
required data objects to the client. The processing of the transaction will be completed at the client. 

In the query shipping approach, the client sends queries to the database server for the transaction, 
instead of data requests. Once the server receives a query, it processes the query and sends the results 
back to the client. In the query shipping approach, the communication cost and the buffer space required 
at the client side are smaller than that in the data shipping approach. Also, the query shipping approach 
provides a relatively easy migration path from an existing single-site system to the client-server 
environment since the database engine can have a process structure similar to that of a single-site 
database system. On the other hand, the data shipping approach can off-load functionality from the server 
to the clients. This may improve the scalability of the system and balance the workload in the system. The 
responsiveness of the system can also be improved by caching data at the client. For that case, 
transactions may be processed locally at the client if they can find their required data. 

Although the query and data shipping approaches are suitable to client-server database systems 
connected with reliable high-speed networks, they may not be suitable to MDRTDBS, which run over a 
mobile network with a bandwidth rated in the range of 9.6kbps to 14.4kbps. The communication 
overheads of these two approaches are often high because processing of each operation may require a 
communication (and the establishment of a new communication channel) between the mobile client and 
the database server. Remember that communication channels in a MDRTDBS are always limited 
resources. Furthermore, the data shipping approach usually requires the transmission of a large volume of 
data objects and the management of data objects at the client caches. Since the mobile network is likely to 
be the bottleneck resource, the transmission delay can be very long and the resulting effect will be a 
higher probability to miss deadlines. 

 
4.2.  Transaction Shipping Approach 
  

A better transaction processing strategy for MDRTDBS should be designed to reduce the 
communication overheads between the mobile clients and the base stations for a transaction, and to 
alleviate the dependency of system performance on the performance of the underlying network. We 
propose to “ship” the entire transaction to the database server (base station) for processing instead of 
shipping every operation or data request to the database server. We call this approach as transaction 
shipping.  Although the idea is simple, there exists many practical problems when it is applied to a 
MDRTDBS such as how to identify the execution path and the required data objects of a transaction 
before its execution, and how to deal with the dynamic properties in transaction execution. In here, we 
suggest a pre-analysis approach. The practicality of the pre-analysis comes from the observation that the 
behavior of many real-time transactions is more predictable comparing to the transactions in 
conventional database systems. To deal with the dynamic properties of the real-time transactions, a data 
pre-fetching mechanism is included in the transaction shipping approach to reduce the cost of incorrect 
prediction in the pre-analysis. 

 
4.2.1.  Transaction Predictability 
 

It is generally agreed that the functions and behavior of transactions in a real-time database 
application are more predictable. Mostly, they can be classified into different types and different 
transaction types will have different pre-defined behavior and critically [11]. For example in a medical 
information system, real-time transactions are for monitoring the physical status of a critical patient from 
various sensor devices, such as the blood pressure, the heart beat rate, and the body temperature. The 
arrival pattern and data requirements of the transactions are pre-defined. In some real-time database 
applications, e.g., programmed stock trading, although the transaction arrival pattern may be sporadic, 
their data requirements can be predicted with a high accuracy. For example, in a programmed stock 
trading, each investor may have a pre-defined investment plan, e.g. what their interested stocks are and 
how to make the trading analysis under different conditions. In a traffic navigation system, the physical 
connections of the roads are pre-defined. When searching the best path to a destination from the current 
position based on the current road conditions, the set of roads to be search is pre-defined. 

 



Concurrency Control in Mobile Distributed Real-Time Database Systems 

 

269

 
          

 
 
    Mobile Network 
 
 
 
 
     Wired 

    Network     
 

 
 
 
 
 
 

 
 

Fig. 2: Process Architecture under Transaction Shipping Approach 

 
4.2.2.  Pre-Analysis Phase 

 
In the transaction shipping approach, the execution of a transaction is divided into two phases: the 

pre-analysis phase and the execution phase. Figure 2 shows the transaction architecture when it is 
processed under the transaction shipping approach. Once a transaction is initiated at a mobile client, a 
coordinator process, called master coordinator, will be created at the mobile client. Before shipping a 
transaction to the base station, the system will perform a pre-analysis on the transaction to derive its 
characteristics, e.g., what the operations of the transaction are and what the execution path of the 
transaction is. The concept of pre-analysis is similar to the two phase methods discussed in [23]. 
However, it should be noted that [23] is concerned about how to reduce the unpredictability in data access 
by using the concept of access invariant. In here, we use the pre-analysis to predefine the execution path 
of a transaction in order to reduce the number of communications between the mobile clients and the base 
stations for a transaction.  

The pre-analysis of a transaction consists of two phases. In the first phase, the set of operations in the 
transaction will be identified. It is usually not difficult to identify the operations in a transaction. For 
example, if SQL statements are used to access the database, the SELECT statements are read operations 
and the INSERT statements are write operations. Note that transactions are assumed to have a simple flat 
structure. At this stage, it may not be necessary to identify the set of data objects required by the 
operations. Actually, it may not be easily done at the mobile client as it only contains limited information 
about the database system and the location of the data objects in the system. The required data objects of 
an operation will be determined while the transaction is executing at the base stations.  

In the second phase, the execution path of the transaction, e.g., the precedence relationships of the 
operations, will be determined.  For some transactions, the whole execution path cannot be determined 
until the data objects required by the transactions have been identified. For example, some conditional 
statements are based on the values of the data objects. For such transactions, the pre-analysis may identify 
the transaction type first and then make the prediction based on the pre-defined characteristics of that 
transaction type. 

After the completion of the pre-analysis, a signature of the transaction will be created. A signature 
transaction Si for transaction Ti consists of a 4-tuple: 
 

 Si  =  (Oi, Di, Ci, <i) 

where   Di is the deadline of Ti. 
Ci is the criticality of Ti. 
Oi is a subset of the operations in Ti. 
<i is the partial order relationship among operations in Oi.  

<i defines the precedence relationship among the operations. If Opj <i Opk, then Opk can start its 
execution only after the completion of Opj, where Opj and Opk are operations of Ti. 
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Fig. 3: The Transaction Shipping Approach 

 
4.2.2. Execution Phase 

 
The signature transaction is forwarded to the base station of the MC through the mobile network. 

Once the server at the base station receives the transaction signature, it will create a process, called image 
coordinator, for the transaction. The image coordinator will take over the job from the master coordinator 
to process the transaction. Other transaction processes (cohorts) for the executions of the transaction will 
be created at other base stations if the operations of the transaction require to access the data objects 
located at that base stations.  

The benefit of defining an image coordinator at the base station is that the connection between base 
stations is much better than the connection between the MCs and its base stations. Thus, it facilitates the 
management of the transactions and improves the performance of the atomic commitment protocol. 
Whenever a transaction has to be restarted, all its cohort processes (excluding the master coordinator and 
the image coordinator) will be destroyed after the completion of undo operations. The image coordinator 
is responsible for restarting the transaction from its beginning if its deadline has not been missed. 

 
4.2.3. Dynamic Properties of Transactions 

 
Although the transactions in real-time database applications are more well-defined, they may still have 

some dynamic properties. Due to the dynamic properties and the interactivities between transactions and 
mobile users, data input from MC may still be needed while a transaction is executing. As a result, the 
pre-analysis of a transaction may need to be re-done while it is executing. For that case it has to go back 
to its originating MC. Before a transaction goes back to the mobile client, the system will pre-fetch the 
data objects possibly needed by the next operation of the transaction, and then ships the data objects with 
the transaction back to the mobile client. The purpose of the data pre-fetching mechanism is to process 
the next operation of the transaction at the mobile client so that the total number of communications 
between the mobile client and the base station can be reduced.  

The assumption of the data pre-fetching mechanism is that the data requirements of the next operation 
can be predicted with a high accuracy. Again, the validity of the assumption is based on the well-defined 
behavior of real-time transactions. Suppose the execution path of a transaction T1 is originally predicted 
to be Path 1 (operations: Op1, Op2 and then Op3) in the first pre-analysis as shown in Figure 4. After the 
completion of operation Op2, it finds out that the original prediction is incorrect, and T1 has to go back to 
the mobile client to “re-define” the execution path which is either Path 2 or Path 3 according to the pre-
defined behavior of the transaction. Before, T1 is shipped back to the mobile client, the system pre-fetches 
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Fig. 4: Data Pre-Fetching Mechanism 

 
the data objects required by Op4 and Op5. Later at the mobile client, T1 can process the next operation Op4 

or Op5. After that, T1 is sent to the base station to commit or continue its following operations. Note that 
under the data pre-fetching mechanism, T1 has to set a lock on the pre-fetched data objects. The purpose 
to is to ensure the serializability of transaction executions.  

Note that the transaction shipping approach does not require the transmission of a large number of 
data objects to the clients as required in the data shipping approach. This is an attractive feature to 
MDRTDBS as the communication bandwidth is low. Although some data objects are required to be 
shipped with a transaction in the data pre-fetching mechanism, the data volume should be much smaller 
than in the data shipping approach as the data pre-fetching mechanism is required only when the 
predicted execution path is incorrect. Furthermore, only those data objects, which are required by the next 
operation, are shipped.  

It is obvious that the performance gained from the pre-analysis depends on its accuracy and the 
dynamic properties of the transactions. In the best case, one single communication between the MC and 
the base station is required for transaction execution. In the worst case, the number of communications 
between the mobile client and the base station for each transaction execution is equal to the number of 
operations in the transaction. If the system can make a good estimation in the pre-analysis, a lot of 
communications can be saved. 

 
5. SIMILARITY-BASED DISTRIBUTED HIGH PRIORITY TWO PHASE LOCKING 

 
Restarting transactions in a MDRTDBS can be very expensive and the restarted transactions will have 

a high probability of missing their deadlines. To reduce the probability of data conflicts and transaction 
restarts, a less restrictive notion of correctness criterion may be explored for concurrency control, e.g., [7, 
12, 15, 26]. In particular, the concept of similarity, which is based on the time-validity of data, is shown 
effective for RTDBS [12, 13]. In this paper, we shall consider the technical issues in the design of a 
similarity-based real-time locking protocol for MDRTDBS. We will incorporate the concept of similarity 
into the DHP-2PL with an attempt to further increase the system concurrency, and to reduce the number 
of transaction restart and blocking due to data conflicts. The new protocol is called Similarity-Based 
Distributed High Priority Two Phase Locking (SDHP-2PL). 

Although the concept of similarity for concurrency control in RTDBS is not new, many technical 
issues in the design of a similarity-based real-time locking protocol are still not clear such as how to 
resolve the lock conflicts between the read and write operations when some of the conflicts are similar 
and some of them are not. Furthermore, it will be interesting to see what will be the effectiveness of using 
similarity in improving the performance of a MDRTDBS.  

 
5.1.  The Basic Strategies 
 
5.1.1.  Data Similarity 

 
Similarity is closely related to the important idea of imprecise computation in real-time systems [19] 

and to the idea of partial computation for databases [2]. It has been shown to be very effective in 
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improving the performance of RTDBS. For many real-time applications, the value of a data object that 
models an object in the external environment cannot, in general, be updated continuously to perfectly 
track the dynamics of the external object. At the same time, it is also unnecessary for data values to be 
perfectly up-to-date or precise to be useful. In particular, the data values of a data object that are slightly 
different are often interchangeable as read data for transactions. This observation underlies the concept of 
similarity among data values. 

The concept of similarity can be used to extend the conventional correctness criterion for concurrency 
control in RTDBS [12, 13], and to balance data precision (based on similarity) and system workload [7]. 
The notions of similarity and strong similarity were originally introduced in [12], which have the property 
that swapping similar conflicting operations in a schedule will always preserve similarity in the output. In 
other words, if two operations in a schedule are strongly similar (i.e., they are either both writes or both 
reads, and the two data values involved are strongly similar), then they can always be used 
interchangeably in a schedule without violating the integrity and consistency of the database. For the rest 
of this paper, unless explicitly specified, all similarity relations considered in this paper are strong 
similarity relations, and all similar data can be used interchangeably in a schedule without adverse results. 
We refer interested readers to [12,  13] for the justification of schedule correctness. 

 
5.1.2.  The Basic Strategies for Conflict Resolution 

 
Specifically, we assume that the application semantics allow us to derive similarity bounds for some 

of the data objects such that two write operations on the data object must be similar if their time-stamps 
differ by an amount no greater than the similarity bound of the data object, e.g., all write operations on the 
same object that occur in any interval shorter than the similarity bound of the data object can be swapped 
in the (untimed) schedule without violating consistency requirement [13]. The time-stamp of a data object 
indicates at which snapshot the current value of the data object is taken from the external environment. 
Different data objects may have different similarity bounds. For example, the transactions in a stock 
trading system may consider the values of the last traded price of a stock to be similar if they are updated 
within a time frame of 10 seconds. For a warehouse keeping system, the similarity bound for the 
inventory data may be in minutes. 

The existence of similarity bounds provides more freedom in concurrency control: whereas two 
conflicting transactions must be totally ordered to preserve serializability, they need not be if their 
conflicting operations occur in an interval shorter than the similarity bound, and can therefore be executed 
concurrently. The basic strategy for conflict resolution in the Similarity-Based Distributed High Priority 
Two Phase Locking  (SDHP-2PL) protocol can be summarized as follows: 

 
(i) Suppose transaction Ti issue a read-lock request on data object Dk, and Dk is already write-

locked by a collection of transactions TH. Let Tj be the most recently committed transaction 
which updates Dk. If the write operation (on Dk) of Tj and the write operations (on Dk) of all 
transactions in TH are similar, then the read-lock request on data object Dk may be granted. It is 
because Ti will always read from similar data values, regardless of which transaction in TH 
commits (or updates Dk) first. 

 
(ii) Suppose transaction Ti issue a write-lock request on data object Dk, and Dk is already write-

locked by a collection of transactions TW and read-locked by a collection of transactions TR. 
Let Tj be the most recently committed transaction which updates Dk. There are two cases to 
consider: 

 
(1) If TR is empty, and the conflicting write operation of Ti and the conflicting write operations 

of all transactions in TW are similar, then the write-lock of Ti may be granted. It is because 
the final state of the database will always be similar regardless of which write operation 
performs first.  

 
(2) If TR is not empty, and the conflicting write operation of Ti, the conflicting write operation 

of Tj, and the conflicting write operations of all transactions in TW are similar, then the 
write-lock of Ti may be granted. It is because the final state of the database will always be 
similar and the read operations will read from similar data value regardless of which write 
operation performs first. 
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Obviously, if the above similarity test of a lock request fails, then two alternatives must be considered:  
 
(1) the lock-requesting transaction may be blocked;  and 
(2) the transactions, which cause the blocking, may be restarted.  

 
Which alternative should be used depends on the priorities of the conflicting transactions. In the 

SDHP-2PL, we adopt both policies as follows: 
Let CT be a subset of TH which consists of transactions that lock Dk in a mode conflicting and non-

similar to the lock request of Ti, and SCT be a subset of CT which consists of transactions with priorities 
lower than Ti.  If the restart of all transactions in CT will make Ti passing the similarity test and the 
priorities of all the transactions in CT are lower than Ti, then the transactions in CT are restarted, and the 
lock request of Ti is granted. 

If some transactions in CT have priorities higher than Ti, i.e., SCT is not equal to CT, simply 
restarting all the transactions in SCT cannot resolve the lock conflict problem. On the other hand, 
restarting all the transactions in CT including the higher-priority transactions may have the cyclic restart 
problem as the restarted higher-priority transactions may restart Ti later. 

There are two possible solutions to resolve the above problem. Firstly, we can use an aggressive 
approach in which Ti will be blocked when CT is not equal to SCT and all the transactions in SCT are 
restarted. The reason of restarting the transactions in SCT is to minimize the blocking time of Ti as the 
time that required to complete the lower-priority transactions can be very long especially in an unreliable 
mobile network. Whenever a transaction in (CT – SCT) releases its lock on Dk, a similarity test will be 
performed for Ti. In this way, sooner or later, Ti will set a lock on Dk when all the higher-priority 
transactions in the (modified) CT have released their locks on Dk. To prevent repeat restarts of lower-
priority transactions, a transaction is not allowed to set a lock if a higher-priority transaction, which is 
non-similar to it, is waiting to set the lock.  

In the aggressive approach, by restarting the lower-priority transactions, the blocking time of the 
higher-priority transaction can be minimized. However, the cost is more transaction restarts and this is not 
desirable in a mobile environment as a restarted transaction will have a higher probability of deadline 
missing. The second method is a conservative approach, in which the lock-requesting transaction will be 
blocked if (CT – SCT) is not empty, e.g., there exists a higher-priority transaction in CT. Each time when 
a transaction releases a lock on Dk, a similarity test will be performed for Ti. Ti will be allowed to set a 
lock on Dk when all the higher-priority lock-holding transactions are similar to it. The number of 
transaction restarts under the conservative approach should be smaller than the aggressive approach. 
However, the blocking time of a higher-priority transaction may be longer and it also has the indefinite 
postponement problem. In the performance experiments (in Section 6), we will investigate the relative 
performance of these two approaches for MDRTDBS. 

Note that we propose to use similarity bounds to quantify the similarity of conflicting operations in 
this paper. However, we should emphasize that the similarity test in the SDHP-2PL can also be re-
implemented as a test for data-value similarity. For example, let transaction Ti issues a write-lock request 
on data object Dk. Under the data-value-based similarity test, the write-lock request must be associated 
with an intended written value Vi. The data-value-based similarity test must compare Vi with the intended 
written values of executing transactions and the current value of Dk to determine whether the lock request 
of Ti should be granted. The lock request is granted only if all of the values are similar. The choice 
between a similarity-bound-based similarity test and a data-value-based similarity test in a MDRTDBS is 
entirely application-dependent. For the purpose of this paper, we should not focus the discussions of 
SDHP-2PL on the selection of similarity tests. Instead, we should explore the effectiveness of using 
similarity for MDRTDBS. 

 
5.2. SDHP-2PL Protocol Definition 

 
In this section, we define the Similarity-Based Distributed High Priority Two Phase Locking (SDHP-

2PL) following the basic strategies defined in the last sub-section.  
Let a transaction Tr request a lock in a specified mode, i.e., read or write, on a data object Dk residing 

at a base station. Tr invokes the lock request procedure of the SDHP-2PL, which is defined, as follows, to 
set the lock. 
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Lock-Request (Tr, Mode, Dk) 
   Begin  
 If the lock request of Tr is similar to existing locks on data object Dk 
   Then /* Please see Section 5.1.2 for the similarity of locks */ 
  Return(Success) 
   Else 

   Let CT be the set of transactions that lock Dk in a mode  
conflicting and non-similar to the lock request of Tr and  
SCT be a subset of CT which consists of transactions with a priority lower 

than Tr 
    Case Aggressive approach 

For each transaction Th in SCT Do 
    If Th is not committing 
      Then 
     Restart Th locally (or globally) if Th is a local 
        (or global) transaction. 
     Remove Th from CT 
      Else 
     Priority(Th) = Priority(Tr) + fixed priority level 
      EndIf 
       EndFor 
       If  CT is still not empty 
       Then 
    Block Tr until all transactions in CT release conflicting and  

   non-similar locks. 
       EndIf 

    Return(Success) 
Case Conservative approach 
    If CT is not empty and CT ≠ SCT 

        Then 
    Block Tr until all transactions in (CT-SCT) release conflicting and  

   non-similar locks. 
       Else 

 For each transaction Th in CT Do 
          If Th is not committing 
         Then 
     Restart Th locally (or globally) if Th is a local 
      (or global) transaction. 
     Remove Th from CT 
        Else 
     Priority(Th) = Priority(Tr) + fixed priority level 
        EndIf 
        EndFor 

    EndIf 
    Return(Success) 

    EndIf 
  End 

 
5.3. Implementation and Performance Issues 
 

The implementation of the similarity-based protocol will not incur heavy additional overheads. The 
main overhead is in the checking of similarity. The checking is performed whenever a lock conflict has 
occurred. Since the lock table is assumed at the main memory, the comparison amongst the similarity 
bounds of the conflicting data objects and the time-stamps of the conflicting transactions should be able 
to be performed in an efficient way. On the other hand, the benefit of a similarity based concurrency 
control protocol is an increase in system concurrency. If the similarity bounds of the data objects are well-
chosen, the benefit obtained from an increased in concurrency control should be more than the overhead 
for the similarity checking. 

As astute reader may notice that an increase in concurrency may not necessarily result in better 
performance, e.g., higher probability of meeting the transaction deadlines. If the similarity bounds are 
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small, even though some of the lock conflicts are similar and concurrent accesses of a data object from 
different transactions are allowed, the transactions may later be restarted due to a conflict with another 
higher-priority transaction which is not similar to the executing transactions. The consequence is a greater 
cost for resolving the lock conflict as more transactions are restarted and greater amounts of resources are 
wasted. Thus, the effectiveness of the similarity approach is highly dependent on the values of the similar 
bounds of the data objects relative to the time required to complete a transaction. Since mobile network is 
slow and unpredictable, the time required to complete a transaction can be very long. It may be that only 
large similar bounds can give a significant improvement to the system performance. The effectiveness of 
similarity for concurrency control in MDRTDBS and the performance of the SDHP-2PL will be studied 
in the next section. 

 
6. PERFORMANCE EXPERIMENTS 

 
We have developed a simulation program for the MDRTDBS model introduced in Section 2 and 

simulation experiments are performed: 
 
(1) to study the performance of the DHP-2PL as compared with the HP-2PL in a MDRTDBS;  

 
(2) to study the performance of the transaction shipping approach, as compared with the query 

shipping approach;  
 

(3) to compare the performance of the two approaches, aggressive and conservative, for resolving 
data conflicts in the SDHP-2PL and to identify the effectiveness of using similarity for 
concurrency control in a MDRTDBS. 

 
Note that the purposes of the simulation studies are not to investigate the performance of the proposed 

protocols and approaches at a specific mobile environment and for a specific real-time database 
application. Instead, the objectives are to identify the performance characteristics of the protocols and 
approaches, and to demonstrate the capability of the algorithms in improving the performance of 
MDRTDBS. In the experiments, we shall focus ourselves on the issues related to mobile network and 
data conflict resolution. 

 
6.1. Simulation Model 

 
A simulation program has been developed using OpNET, which is a proprietary simulation tool 

according to the MDRTDBS model introduced in Section 2. In OpNET, a radio module is provided for 
mobile communication [22]. With the radio module, most of the details of a cellular radio network, such 
as the mobile clients, MTSO and base stations are implemented and the unique features of a mobile 
network such as call-setup procedure, tear down features, and handoff procedure, are modeled explicitly. 
In the simulation program, the clients are modeled with mobility and may move around and even cross 
the cell borders. Different clients are given different trajectories. They can self-locate themselves based 
on the received signal strength from the base stations and communicate with the base stations using pre-
defined radio signals via the uplink and downlink channels. Disconnection is modeled explicitly by 
defining a probability for a disconnection between a mobile client and its base station every time when a 
channel request is made. Transient errors in communication are modeled by a noise factor, which affects 
the strength of radio signal received by the base stations and mobile clients.  

In the system level, a DRTDBS model is implemented [31] in which the Distributed High Priority 
Two Phase Locking (DHP-2PL) is used for concurrency control. The database system at each base station 
is shown in Figure 5. It consists of a scheduler, a CPU, a ready queue, a local database, a lock table, and a 
block queue. It is assumed that the database is resided at the main memory in order to eliminate the 
impacts of disk I/O scheduling on the system performance [1, 33]. To simplify the model, we further 
assume that all the temporal data objects have the same avi and rvi†. In each local database system, an 
 

                                                           
†Note that if the avi and rvi or the temporal data objects are different and some of them have a smaller value, the probability of 

transaction abort will be higher due to tighter temporal constraint. However, the impact of this factor on the relative performance of 
the proposed protocols and approaches should be similar. 
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Fig. 5: Model of a Database System in a Base Station 
 
update generator creates updates periodically to refresh the validity of the temporal data objects. Updates 
are single operation transactions. They do not have deadlines. The priorities of the updates are assigned to 
be higher than the priorities of all of the other transactions in order to maintain the validity of the 
temporal data objects [36]. 

Transactions are generated from mobile clients sporadically. Each transaction is defined as a sequence 
of operations. It is assumed that the transactions have the same criticality level. Let each operation access 
a single data object, and the required data object of an operation is evenly distributed in the database. The 
operations have similar CPU requirement statistically. Transactions wait in the ready queue for CPU 
allocation, and the CPU is scheduled according to the transaction priorities which are assigned based on 
the earliest deadline first policy. Since we assume that the transactions are associated with firm deadlines, 
the scheduler will check the deadline before a transaction is allocated the CPU.  If the deadline is missed, 
the transaction is aborted immediately. If any of the temporal data objects accessed by the transaction 
becomes invalid before the commitment of the transaction, the transaction is aborted as it may observe 
some out-dated data values. After the completion of a transaction, the mobile client will generate another 
transaction after a think time. 

In the model, the Distributed High Priority Two Phase Locking (DHP-2PL) is employed for 
concurrency control. (In the second set of experiments, we will replace it with the SDHP-2PL.) A lock 
table is maintained for the data objects residing at each base station. The scheduler detects lock conflicts 
by examining the lock table. Before an operation is processed, its required lock has to be set in an 
appropriate mode. After the completion of all the operations of a transaction, the transaction enters the 
commit phase in which the two phase commit protocol will be performed. The locks of a transaction will 
be released upon its commitment. 

 
6.2. Model Parameters and Performance Measures 

 
Similar to many previous studies on single-site and distributed RTDBS, the deadline of a transaction, 

T, is defined according to the expected execution time of a transaction [1, 4, 8, 17, 18]: 
 

Deadline = ar(T) + pex(T) × (1 + SF) 

where  SF : the slack factor which is a random variable uniformly chosen from a slack range; 
ar(T): the arrival time of transaction T; 
pex(T): the predicted execution time of T. It is defined as: 

 

pex(T) = (Tlock + Tprocess + Tupdate) × Noper 

where  Noper: the number of operations  in the transaction;  
 Tlock: the CPU time required to set a lock; 
 Tprocess: the CPU time required to process an operation; and 
 Tupdate: the CPU time to update a data object (for write operations). 
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Since different transaction processing strategies will expect different transaction execution times, we 
assume that all the operations of the transactions are local operations in the calculation of transaction 
deadlines. 

The baseline setting of the model is shown as follows: 
 

Parameters Baseline Values 
System Level 
Number of MTSO 1 
Number of Cell Sites 7 
Location Update Interval 0.2 second 
Transmission Speed for Channel 10 kbps 
Number of Channels for Each Cell Site 10 
Transaction 
Think Time 4 seconds 
Transaction Size 7 to 14 operations, uniform distribution 
Proportion of write operations 1.0 
Slack range 10 – 20 (the slack factor is uniformly distributed in 

the slack range) 
Mobile Network 
Number of Mobile Clients 84 
Channel Connection time (CL) 1 second  
Call Update Interval 0.2 second 
Disconnection probability 0.5% 
Database 
Number of Local Databases 7 (1 in each base station) 
Database Size 200 data objects per local database 
Concurrency Control Distributed High Priority Two Phase Locking  

(DHP-2PL) 
Fraction of Temporal Data Objects 10% 
Temporal Data Object Update Interval 0.5 update per second per data object 
Absolute Threshold (avi) 12 seconds 
Relative Threshold (rvi) 8 seconds 
CPU 
CPU Scheduling Earliest Deadline First 
CPU time to process an operation 34 ms 
CPU time to set a lock  1 ms 
CPU time to release a lock 1 ms 
CPU time to check a lock 1 ms 
CPU time to update a data object 6 ms 
CPU time for pre-analysis 100ms 
Deadline Missing Treatment Firm deadline, abort the transaction once the 

transaction deadline is found missing 

Table 1: Model Parameters and Their Baseline Values 
 

The channel connection time (CL) is the time required to send a message from an MC to its base 
station. It is defined based on the transmission speed of the channel and the message size. For a 
transmission speed of 10kbps, the channel connection time is 1 second for a message of 1Kbytes. The 
location update interval must be smaller than the channel connection time. Otherwise, a channel will not 
be able to be created after an MC has crossed the border into another cell site.  

In the simulation program, the locality of transactions in accessing data objects is not modeled 
explicitly. The reason is that data locality is application-dependent, and it is not our objective to study the 
performance of the system for a specific application. Instead, a small database is used which allows us to 
study the effect of hot-spots, in which a small part of the database is accessed very frequently by most of 
the transactions. Another benefit of using a small database is to create a high data contention 
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environment. It helps us to understand the performance characteristics of the concurrency control 
protocol. A small database means that the degree of data contention in the system can be easily controlled 
by the sizes of the transactions.  

The primary performance measure used is the miss rate. It is defined as the number of transactions 
which miss deadlines over the total number of transactions generated. In addition to miss rate, we also 
measure the conflict probability (CP) which is defined as the total number of lock conflicts over the total 
number of lock requests. The conflict probability can be used as an indicator of the degree of data 
contention in the system. Other measures are CPU utilization and the abort with restart probability 
(ARP). The CPU utilization gives the degree of resource contention at the base station. The ARP is 
defined as the number of aborted transactions, which had been restarted due to lock conflict, over the total 
number of transactions which have been restarted. It can be an indicator of the probability of deadline 
missing due to transaction restart.  

 
6.3. Simulation Results and Discussions 

 
In the following sub-sections, we report the important simulation results obtained from the simulation 

experiments. In each simulation run, the simulation time is 1,000sec. For a think time of 4 seconds, about 
10,000 transactions are generated from the 84 mobile clients in each simulation run.  The length of the 
simulation is determined after a number of trial runs using different simulation lengths until stable results 
are obtained. 

 
6.3.1. Performance of the DHP-2PL  
  

In this set of experiments, we compare the performance of the DHP-2PL with the distributed version 
of HP-2PL in which the lock-holding transaction will be restarted when the priority of the lock-requesting 
transaction is higher. 

In Figure 6 (see Appendix A), we can see that the performance of the DHP-2PL is consistently better 
than the HP-2PL at different transaction workloads. An increase in think time decreases the transaction 
workload. The better performance of the DHP-2PL is due to its specific lock conflict resolution 
mechanisms for mobile network:  (1) priority inheritance for resolving the lock conflict where the lock 
holding transaction is committing; and (2) cautious waiting for resolving the lock conflict where the lock 
holding transaction is suspected to be a disconnected transaction. Although the probability of network 
disconnection is very low as defined in the experiments, e.g., 0.5%, its impacts on system performance 
can be very significant due to the chain of blocking effect. A disconnected transaction can block several 
transactions directly and transitively. Consequently, all the blocked transactions may miss their deadlines. 
The higher lock conflict probability can be observed in Figure 7 in which we can see that the conflict 
probability of the DHP-2PL is consistently lower than that of the HP-2PL. We repeat the experiments for 
a system where the deadline constraints of the transactions are tighter, e.g., the slack range is 20 to 25. 
The results are shown in Figure 8. Consistent with the results in Figure 6, the miss rate of the DHP-2PL is 
significantly lower than that of the HP-2PL for different values of think time. 

 
6.3.2. Performance of the Transaction Shipping Approach 
  

In this set of experiments, we study the performance of the transaction shipping approach (TS) as 
compared with the query shipping approach (QS) at different return probabilities. The reason of not 
comparing with the data shipping approach is that the data shipping approach may require the 
transmission of large amount of data and is not suitable to MDRTDBS. Under the transaction shipping 
approach, a transaction has to go back to its originating mobile client while it is executing when: (1) it has 
to receive input data from the mobile client; or (2) the prediction at the pre-analysis phase is incorrect. For 
both cases, the pre-analysis for the transaction has to be performed again at the mobile client.  

In the experiments, the return probability defines the probability for which a transaction has to go 
back to its originating mobile client after the completion of an operation. The value of return probability 
depends on the accuracy of the prediction obtained at the pre-analysis phase and the dynamic behavior of 
the transactions. When the return probability is set to be zero, it means that the prediction is correct, and 
the transaction does not need to go back to the mobile client once it has been transmitted to the base 
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station. If the return probability is set to be one, the prediction completely fails. Every time after an 
operation has been completed, the transaction has to go back to the base station to refine the execution 
path for its remaining operations.  

Figure 9 shows the miss rates of the transactions shipping approach (TS) and the query shipping 
approach (QS) at different return probabilities and when the channel connection times are 1 second (CL = 
1) and 2 seconds (CL = 2). From the figure, it can be seen that the performance of the system is greatly 
improved with the use of the transaction shipping approach, especially when the return probability is low 
(a high accuracy of prediction in the pre-analysis phase). This is consistent with our expectation. Under 
the transaction shipping approach, the number of communications required to process a transaction is 
much reduced. Thus, the transactions can be completed earlier as the total mobile network delay is much 
reduced. Even though a transaction has been restarted due to a lock conflict with a higher-priority 
transaction, the restarted transaction still has a high probability to be completed before its deadline. Thus, 
the abort with restart probability (ARP) is much lower under the transaction shipping approach than under 
the query shipping approach as shown in Figure 10. With the use of transaction shipping approach, the 
workload in the CPU is generally higher as some of the workload on the network is now shifted to the 
base stations. Thus, we can see that the CPU utilization increases with a reduction in the return 
probability as shown in Figure 11. 

An important observation in Figure 9 is that even though the return probability is 1, e.g., the 
prediction is wrong every time, the performance of the transaction shipping approach (TS) is still much 
better than the query shipping approach (QS). It is due to the data pre-fetching mechanism in the 
transaction shipping approach. Even though a wrong prediction has been made in the pre-analysis phase, 
the system still can pre-fetch the required data of the next operation of the transaction based on the pre-
defined characteristics of the transaction. Thus, the number of communications between the base stations 
and mobile clients is still much reduced. 

As also can be observed in Figure 9, the improvement of using the transaction shipping approach is 
smaller when the channel contention time is long and the return probability is high, e.g., CL = 2 and 
return probability = 1. The reason is that at a higher channel contention, even with the use of the 
transaction shipping approach, the transactions may still have a high probability of missing deadlines. As 
shown in Figure 10, the abort with restart rate for the transaction shipping approach is higher at longer 
channel connection time. 

We repeat the experiments using a looser deadline constraint for the transactions, e.g., slack range is 
20 – 25.  The results are shown in Figure 12 to Figure 14. Consistent with the previous set of results, the 
use of transaction shipping approach still can greatly improve the system performance when the 
transactions have looser deadline constraints, e.g., more slack time for execution. 

Figure 15 shows the impacts of different pre-analysis overheads (in terms of the amount of time) on 
the miss rate under the transaction shipping approach when the return probabilities (RR) are 0.8 and 1.0. 
One interesting observation is that the overheads do not have any significant effect on the performance of 
the transaction shipping approach. Although the overheads may make the deadlines tighter, because of the 
lengthened time required to complete a transaction, it also releases the degree of resource contention in 
the system (the mobile network and the base stations), especially on the channels. It is because the 
transactions now spend more time at the mobile client side, instead of at the mobile network and base 
stations. 

 
6.3.3. Performance of the Similarity-Based Protocols 
 

Figure 16 shows the performance of the SDHP-2PL using the aggressive approach (SDHP-2PL-Ag) 
and the conservative approach (SDHP-2PL-Con) at different similarity bounds. It is surprise to see that 
for both SDHP-2PL-Ag and SDHP-2PL-Con relaxing the correctness of concurrency control to similarity 
may not always improve the system performance. If the similarity bound is very small, e.g., ≤ 1 seconds, 
the miss rates are even higher than the case where the similarity bound is zero, e.g. the protocol is reduced 
to the DHP-2PL. The main reasons may be that:  

 
(1) although relaxing the correctness criterion to similarity can increase the system concurrency, the 

number of transaction restarts may be higher if the similarity bound is very small. More than one 
transaction may be allowed to access a data items concurrency if they can pass the similarity test. 
However, all of them may be restarted if they are not similar to a higher-priority transaction.  
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(2) The transaction restart overhead is very high in a mobile environment. The probability of deadline 
missing will be much higher if a transaction is restarted.  

 
As shown in Figure 16, the values of the similarity bounds of the data objects play an important role in 

the effectiveness of using similarity for concurrency control. A significant amount of improvement is 
achieved for larger similarity bounds, e.g., similarity bound ≥ 2 seconds. As expected, the improvement is 
due to smaller blocking and restart probability. Smaller conflict probabilities can be observed in Figure 17 
in which the conflict probability of both SDHP-2PL-Ag and SDHP-2PL-Con decreases with an increase 
in similarity bound. 

When we compare the performance of the SDHP-2PL-Ag with SDHP-2PL-Con, we can see that in 
general SDHP-2PL-Con gives a better performance although their performance is very similar especially 
when the similarity bound is very small and very large. The main reason of the slightly poor performance 
of the SDHP-2PL-Ag is due to the heavy restart overhead. In the SDHP-2PL-Ag, a lower-priority 
transaction will be restarted if the priority of the lock requesting transaction higher. The restarted 
transaction will have a high probability of miss its deadline. As shown in Figure 18, the abort with restart 
probability is higher in the SDHP-2PL-Ag than that in the SDHP-2PL-Con. When the similar bound is 
large, the performance of SDHP-2PL-Ag and SDHP-2PL-Con becomes very similar as most of the 
conflicts are resolved by similarity. 

 
7. CONCLUSIONS 

 
The design of mobile distributed real-time database systems (MDRTDBS) is receiving growing 

interests in recent years. Due to the poor quality of services provided by a mobile network, it is not easy 
to meet the deadlines of the transactions in a MDRTDBS. In this paper, we define a detailed model for 
MDRTDBS, in which the mobility of the mobile clients and characteristics of the mobile network, e.g., 
disconnection and low bandwidth, are modeled explicitly. We have designed a distributed real-time 
locking protocol, called Distributed High Priority Two Phase Locking (DHP-2PL), where the 
characteristics of the mobile network are considered in resolving the conflicts in data accesses. Then, we 
propose two strategies to improve the system performance and to reduce the impact of mobile network on 
the performance of the adopted concurrency control protocol. We first propose the concept of transaction 
shipping to reduce the dependency of a concurrency control protocol on the performance of the 
underlying network. With the transaction shipping approach, the communication overheads for processing 
a transaction can be much reduced. A data pre-fetching mechanism is included in the transaction shipping 
approach to deal with the dynamic properties of transactions and inaccuracy of prediction in the pre-
analysis. We then adopt the notion of similarity to resolve conflicts among data access that can be very 
costly over a mobile network. Different issues in the design of similarity-based real-time locking protocol 
are discussed. In the design of similarity-based locking protocol, special attention should be paid in 
resolving a lock conflict in which some of the lock holders are similar to the lock requester while some of 
them are not. Two methods, the aggressive and conservative approaches, are suggested to resolve the 
conflicts.  

Simulation experiments have been conducted to investigate the performance of the DHP-2PL 
protocol, the effectiveness of the transaction shipping approach and the similarity-based protocols. With 
the transaction shipping approach, the number of deadline violations is greatly reduced as the contention 
for channels, the time spent on communication, the probability of lock conflict, and the amount of 
resources wasted on restarted transactions are much reduced. The transaction shipping approach can also 
help balance the workload in the system (between the channels and the base stations). The use of 
similarity-based algorithm further improves the system performance by reducing the number of lock 
conflicts. However, the experimental results show that the effectiveness of similarity depends very much 
on the values of the similarity bounds. 
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Fig. 6: Impact of Think Time on Miss Rate 
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Fig. 7: Impact of Think Time on Conflict Probability 
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Fig. 8: Impact of Think Time on Miss Rate When the Slack Bound Is 25- 20 
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Fig. 9: Impact of Return Probability on Miss Rate 
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Fig. 10: Impact of Return Probability on Abort with Restart Probability 
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Fig. 11: Impact of Return Probability on CPU Utilization 
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Fig. 12: Impact of Return Probability on Miss Rate 
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Fig. 13: Impact of Return Probability on Abort with Restart Probability 
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Fig. 14: Impact of Return Probability on CPU Utilization 
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Fig. 15: Impact of Pre-Analysis Overhead 
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Fig. 16: Impact of Similarity Bound on Miss Rate 
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Fig. 17: Impact of Similarity Bound on Conflict Probability 
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Fig. 18: Impact of Similarity Bound on Abort with Restart Probability 

 
 

 


