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involved in providing predictable real-time data servicesin centralized database systems have been studied andthe results are promising [11] [12]. However, we are notaware of research results for providing data services withQuality-of-Service(QoS) guarantees in distributed real-time database environments.In distributed environments, it is challenging to pro-vide data services with QoS guarantees while still meetingtransaction temporal requirements needed by di�erentreal-time applications. One of the reasons is that a dis-tributed system's performance depends on the workloaddistribution. Transaction workload 
uctuations causeuneven distribution of the workload among the sites evenif on the average, all sites receive a similar workload. Asite may experience transient overloads caused by burstarrivals. Moreover, transaction access patterns may betime-varying and skewed. With skewed access patterns,many transactions may access a set of data items storedonly at a speci�c site, overloading the site. In addition,the overloading point also changes dynamically. The QoSmanagement algorithm must deal with these situationsand guarantee the speci�ed QoS requirements.Data replication can help database systems meet thestringent temporal requirements of real-time applica-tions. Data replication greatly improves the system per-formance when the majority of operations on data repli-cas are read operations. It also helps avoid the data ac-cess skew problem mentioned above because transactionscan access locally available data replicas.Load balancing is a technique to provide better QoSin distributed systems. By transferring transactionsfrom highly overloaded sites to the less loaded sites, theoverload situation is alleviated and the QoS of transac-tions are maintained. In this paper, we study the is-sues involved in providing QoS in distributed real-timedatabases and propose a QoS management algorithmthat controls and balances the workloads in distributedreal-time database systems. The algorithm consists oflocal feedback controllers and heuristic feedback-basedglobal load balancers (FB-GLB) running at each site.



The local controller controls the admission process ofthe incoming transaction workload. The global load bal-ancers collect the performance data from other sites andbalance the workloads. A simulation study shows thatstrict QoS requirements are guaranteed under a widerange of workloads.The rest of the paper is organized as follows. Section2 describes our real-time database model. The real-timedatabase QoS management architecture is presented inSection 3. In Section 4, the algorithm for distributed en-vironments is described. Section 5 shows the details ofthe simulation settings and presents the evaluation re-sults. Related work is discussed in Section 6 and Section7 concludes the paper and discusses future work.2 Real-time Database Model and Perfor-mance MetricsBefore we present our QoS management algorithm, we�rst introduce the distributed real-time database systemmodel and the performance metrics considered in thispaper.
2.1 Real-time Database ModelIn this paper, we consider a distributed real-timedatabase system which consists of a group of main mem-ory real-time database systems connected by a LocalArea Network(LAN). Due to the high performance ofmain memory accesses and the decreasing main memorycost, main memory databases have been increasingly usedfor data management in real-time applications [3]. Wefocus our study on medium scale distributed databases(in the range of 5 to 10 sites), since the load balancersneed full information from every sites to make accuratedecisions. Several applications that require distributedreal-time data services fall in that range. For example, aship-board control system which controls navigation andsurveillance consists of 6 distributed control units and 2general control consoles located throughout the platformand linked together via a ship-wide redundant Ethernetto share distributed real-time data and coordinate theactivities [7]. We leave it as the future work to make oursolution applicable to large scale distributed real-time ap-plications with 100s of sites involved, using only a partialinformation from a subset of sites.In this paper, we apply �rm deadline semantics inwhich transactions add value to the application only ifthey �nish within their deadlines. Hence, tardy transac-tions (transactions that have missed their deadlines) areaborted upon their deadline miss. Firm deadline seman-tics are common in several real-time database applica-tions. A late commit of a real-time transaction may incur

the loss of pro�t or control quality, resulting in wastedsystem resources. Our objective is to provide QoS guar-antees for real-time data services in those applications.2.1.1 Data CompositionIn our system model, data objects are divided into twotypes, namely, temporal data and non-temporal data.Temporal data are the sensor data from physical world.In ship-board control applications, they could be shipmaneuvering data such as position, speed and power; instock trading, they could be real-time stock prices. Tem-poral data objects have validity intervals and are updatedby periodic sensor update transactions. Non-temporaldata do not change dynamically with time. Thus theydo not have validity intervals and there are no periodicsystem updates associated with them.In our distributed real-time database system model,a local site is called a node. Each node hosts a set oftemporal data objects and non-temporal objects. Thenode is called the primary node for those data objects.Each node also maintains a set of replicas of temporaldata objects hosted by other nodes. The fresh value oftemporal data objects are periodically submitted fromoutside to their primary nodes and propagated to thereplicas. In our replication model, temporal data objectsare fully replicated and the replicas are updated as soonas the fresher data are available. Non-temporal data ob-jects are not replicated because replicating non-temporaldata objects will not improve the system performance ifthe majority of operations are not read.2.1.2 Transaction ModelIn our system, transactions are divided into two types,system update transactions and user transactions. Sys-tem update transactions are temporal data (sensor data)update transactions and temporal data replica updatetransactions. User transactions are queries or updatesfrom applications. User transactions are divided to dif-ferent service classes, e.g., class 0, 1 and 2. The lower theservice class number, the higher the priority the transac-tion has during the execution. Class 0 is the service classthat has the best quality of service guarantee.Transactions are represented as a sequence of opera-tions on data objects. The operation of a system updatetransaction is always write. For user transactions, theoperation on non-temporal data objects could be read orwrite while the operation on temporal data could only beread. There is a certain execution time associated witheach operation and the execution time of a transaction isthe sum of the execution time of all its operations.Operations of one transaction are executed in sequen-tial fashion. One operation can not be executed unless



all previous operations are �nished.
2.2 Major Performance MetricIn our distributed real-time database system model,the main performance metric is per-class deadline missratio. The Miss Ratio for service class i is de�ned as:MRi = 100� #tardyi#tardyi+#timelyi (%)where #tardyi and #timelyi represent the number ofclass i transactions that have missed and met their dead-lines, respectively. The DBA (Database Administrator)can specify a tolerable miss ratio threshold (e.g., 2%), fora speci�c class of real-time transactions. Since databaseworkloads and access patterns of transactions vary dy-namically, it is reasonable to assume that some deadlinemisses are inevitable. A few deadline misses are consid-ered acceptable unless they exceed the speci�ed tolerancethreshold. To guarantee QoS, an admission control is ap-plied, and hence the deadline miss ratio is accounted foradmitted transactions only.
2.3 Other Performance MetricsIn addition to the deadline miss ratio, we use otherperformance metrics to measure the system's perfor-mance.2.3.1 Transient Performance MetricsLong-term performance metrics such as average miss ra-tio are not su�cient for the performance speci�cation ofdynamic systems in which the system performance canbe time-varying. For this reason, transient performancemetrics such as overshoot and settling time are adoptedfrom control theory for a real-time system performancespeci�cation [19]:� Miss Ratio Overshoot (MROSi) is the maximumtransient miss ratio of class i transactions.� Settling time (ts) is the time for the transient missratio overshoot to decay and reach the steady statewhere the miss ratios are below the speci�ed averagevalues.2.3.2 System Resources Utilization andThroughputIn our main memory database model, the CPU time isthe main system resource for consideration. Using thesystem throughput, we show that our algorithm does notsacri�ce the transaction throughput to provide the QoSguarantees.

� CPU Utilization: The CPU time utilization at eachindividual node.� Throughput(TP): The number of completed trans-actions per second.
2.4 QoS SpecificationsThe transactions at each node are divided into severalservice classes. Each service class has certain QoS spec-i�cations. In this paper, we consider the following QoSspeci�cation as an example to illustrate the applicabilityof our approach for service di�erentiation.QoSspec = f(MRQoS0 � 1%;MROSQoS0 � 2%; ts �50seconds); (MRQoS1 � 10%); (MRQoS2 =best� effort)gNote that this speci�cation requires that the averagemiss ratio is below 1% for Class 0. In the ship-boardsystem, class 0 transactions relate to tracking importanttargets. Due to the environmental uncertainty, 100%guarantees are not possible. We also set MROS0 � 2%,therefore, a miss ratio overshoot of class 0 transactionsshould not exceed 2%, and the overshoot should decaywithin 50 seconds. The average miss ratio should be be-low 10% for Class 1. Class 1 transactions are those thattrack less important targets, such as \friendly" targets.The best-e�ort service is speci�ed for Class 2. Class 2transactions include environmental monitoring and cer-tain display activities.In our previous work [11], we presented an ap-proach for service di�erentiation in a centralized real-time database system. In this paper, we extend thefeedback-based miss ratio control to distributed real-timedatabases. It is challenging to provide average and tran-sient miss ratio guarantees in distributed environments,while di�erentiating real-time data services among theservice classes.3 System ArchitectureThe system architecture of one node is shown in Fig.1. The real-time database system consists of an admis-sion controller, a scheduler, a transaction manager, andblocked transaction queues. A local system performancemonitor, a local controller and a global load balancer areadded to the system for QoS management purpose. InFig. 1, the solid arrows represent the transaction 
owsin the system and the dotted arrows represent the per-formance and control information 
ows in the system.The system performance statistics are collected pe-riodically by the transaction manager. At each sam-pling period, the local monitor samples the system per-formance data from the transaction manager and sends it
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Figure 1. Real-time Database Architecture for QoS Guarante eto the local controller. The local miss ratio controller andutilization controller generate local control signals basedon the sampled local miss ratio and utilization data. Thedetails of the controller are discussed in the next section.The admission controller is used to avoid overloadingthe system. It is based on estimated CPU utilization andthe target utilization set point. At each sampling pe-riod, the target utilization parameter is set by the localcontroller. The estimated execution time of an admit-ted transaction is credited to the estimated CPU uti-lization. Transactions are rejected if the estimated CPUutilization is higher than the target utilization set by thecontroller. To provide better services to transactions ofhigher service classes, priority-aware admission control isused, i.e., all arrived class 0 transactions are admitted tothe system. The underlying assumption is that the sys-tem should be designed with su�cient capacity to handlea signi�cant number of incoming transactions of class 0.The transaction manager consists of a concurrencycontroller (CC), a freshness manager (FM), a data man-ager (DM) and a replica manager (RM). For concurrencycontrol, we use 2PL-HP (Two Phase Locking - High Pri-ority) [2]. 2PL-HP is selected since it is free of a pri-ority inversion and is shown to work well in real-timedatabases.During the transaction execution, if it needs tempo-ral data hosted by other nodes, the transaction manageruses the local copy. If it needs to access non-temporaldata hosted by other nodes, the transaction manager

sends sub-transaction initiation request to the primarynode of the data. The remote node then sets up asub-transaction, which executes on behalf of the origi-nal transaction. The two-phase commit protocol is usedto ensure the serializability of concurrent transactions.The FM checks the freshness before accessing a dataitem using the corresponding absolute validity interval(avi). It blocks a user transaction if the target data itemis stale. The blocked transaction(s) is resumed and trans-ferred from the block queue to scheduler as soon as thecorresponding data object is updated. FM also checksthe freshness of accessed data just before a transactioncommits. If the accessed data item is stale, the transac-tion is restarted. In this way, the data objects accessed bycommitted transactions are always 100% fresh at committime.The user transactions are scheduled in one of multi-level queues according to their service classes. A �xedpriority is applied among the multi-level queues. A trans-action in a low priority queue is scheduled to run onlywhen there are no ready transactions at the higher pri-ority queues. A low priority transaction is preemptedupon arrival of a high priority transaction. Within eachqueue, transactions are scheduled using Earliest Dead-line First (EDF). The system update transactions areexecuted together with user transactions. Since they up-date the data objects needed by user transactions, systemupdate transactions are given higher priority than usertransactions.
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Figure 2. Utilization and Miss Ratio Controllers
in Centralized Systems4 Algorithm for QoS GuaranteesIn this section, the QoS management algorithm in dis-tributed real-time databases is presented. We �rst intro-duce a feedback-based control algorithm for centralizedsystems. Then we present the details of our decentralizedload balancing algorithm and the integration of the twoalgorithms.

4.1 Algorithm in Centralized SystemsFeedback control has been proven to be very e�ec-tive in supporting a required performance speci�cationwhen the system model includes uncertainties. Basically,the target performance can be achieved by dynamicallyadapting the system behavior based on the performancedeviation measured in the feedback loop. Feedback con-trol has recently been applied to various computationalsystems to provide performance guarantees [18] [22] [24].4.1.1 Centralized Control LoopsAt each node, there are a local miss ratio controller anda local utilization controller. As shown in Fig. 2 (a),the local miss ratio controller takes the miss ratios fromthe latest sampling period, compares them with the QoSspeci�cation and computes the local miss ratio controlsignal �UMR, which is used to adjust the target utiliza-tion at the next sampling period. The equation used inthis paper to derive �UMR is as follows.�UMR =Pni=1 PMR � (MRi �MRQoSi) +Pni=1 IMR � (LTMRi �MRQoSi)MRi is the miss ratio of class i transactions of lastperiod and LTMRi is the long term average miss ratioof class i transactions;MRQoSi is the speci�ed miss ratio
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Figure 3. Local Control Algorithm Architecturerequirement by the QoS speci�cation; n is the speci�edQoS level; PMR and IMR are two controller parameters.In order to prevent under-utilization, a utilizationfeedback loop is added. This is used to avoid a trivialsolution, in which all the miss ratio requirements are sat-is�ed due to under-utilization. At each sampling period,the local utilization controller compares the utilization ofthe last period with the preset utilization threshold andgenerates the local utilization control signal �UUtil asfollows.�UUtil = PUtil � (Util � Utilpreset)+IUtil �(LTUtil� Utilpreset)Util is the CPU utilization of the last sampling periodand LTUtil is the long term average CPU utilization ofthe system; Utilpreset is the preset target CPU utiliza-tion; PUtil and IUtil are the controller parameters.The controller parameters determine the behavior ofthe controllers. The process of tuning their values iscalled controller tuning. The controller analysis and tun-ing are not the focus of this paper. Details of the analysisand tuning used in our controller design are provided in[19], [12].The local control architecture is shown in the Fig.3. At each sampling period, the system utilization andtransaction miss ratios are input into the utilization con-troller and miss ratio controller. The smaller output ofthe two controllers is used to adjust the target utilizationof the admission controller.
4.2 Global Load BalancerTo balance the workload between the nodes andthus provide distributed QoS management, decentralizedglobal load balancers (GLB) are used. GLBs sit at eachnode in the system, collaborating with each other forload balancing. As discussed before, in this paper we



consider GLBs utilizing full information from every node,which is reasonable for medium size distributed real-timedatabase applications such as ship-board control systems.At each sampling period, nodes in the system exchangetheir system performance data. The GLB at each nodecompares the performance of di�erent nodes. If a node isoverloaded while some other nodes in the system are not,the GLB at the overloaded node will send some work-load to other nodes that are not overloaded in the nextperiod.4.2.1 System Performance IndexesTo measure the system performance of one node, we in-tegrate the miss ratios of di�erent service classes into theperformance indexes, Miss Ratio Index (MRI) and LongTerm Miss Ratio Index (LTMRI). MRI is a measure ofsystem performance deviation from the speci�cations. Itis de�ned as follows.MRI =Pni=0WMRi � (MRi �MRQoSi)In the de�nition, MRi is the miss ratio of class i trans-actions andMRQoSi is the speci�ed miss ratio guaranteefor class i transactions. WMRi is the prede�nedMiss Ra-tio Weight for transaction service class i. Larger miss ra-tio weights are associated with transaction service classeswith higher priority because transaction deadline missesof transactions with higher priority are more serious thanthe deadline misses of lower class transactions.The long term miss ratio index LTMRI is the longterm average of the miss ratio index. It is calculatedusing the following equation:LTMRI [k] = ��LTMRI [k�1]+(1��)�MRI [k]where 0 � � � 1 and LTMRI [n] is the long term missratio index of period n.4.2.2 Load Transferring FactorThe load sharing process is guided by the load transfer-ring factor (LTF). The LTF at each node is an arrayof real numbers which denote the amount of workloadthe local node transfers to other nodes during the nextsampling period. The LTFij is de�ned as follows.� LTFij : The workload that local node i could trans-fer to node j the next sampling period.The LTF is measured by required CPU time of trans-actions that one node can transfer to other nodes. Forexample, if LTFij is 0.2 and the sampling period is 2 sec-onds, node i can transfer to node j a set of transactionsthat require 0:2 � 2 = 0:4 second of CPU time for exe-cution. In case di�erent nodes have di�erent processingcapacity, a standardized CPU time unit may be used.

4.2.3 Decentralized Global Load Balancing Al-gorithmWhen one node collects the performance data from theother nodes, a feedback-based load balancing algorithmis carried out to calculate the LTF . The algorithm is di-vided into two steps, Workload Imbalance Test and LTFAdjustment.� Workload Imbalance Test: The �rst step is totest whether there exists load imbalance betweennodes. To do that, we calculate the mean deviationof MRIs from di�erent nodes. The mean deviationis de�ned as follows.Mean Deviation =1n �Pni=1(ABS(MRIi �MEAN(MRI)))where MRIi is the miss ratio index of node i;ABS(MRIi) returns the the absolute value ofMRIiandMEAN(MRI) returns the mean ofMRIs; n isthe number of nodes in the system.The mean deviation of MRI is a measure for work-load distribution in the system. A high value of themean deviation means that the workloads are notbalanced while a low value of the mean deviationmeans the system workloads are well balanced. De-pending on the value of the mean deviation, the algo-rithm makes di�erent LTF adjustments. A systemparameter, Mean Deviation Threshold, is used totest whether there exists load imbalance in the sys-tem. When the measured mean deviation is largerthan this threshold, the system workload is not con-sidered to be balanced. Otherwise, the system work-load is considered to be balanced.� LTF Adjustment: The LTF adjustment is di-vided into two cases depending on whether the sys-tem workload is balanced.{ Workload Not Balanced: When there is loadimbalance in the system, i.e., the mean devia-tion of MRIs is larger than the threshold, itis necessary to share the load between nodes.The load balancing algorithm at the overloadednodes will shift some workload to the lessloaded nodes. A node i is considered to beoverloaded compared to other nodes if and onlyif the di�erence between its MRI and MRImean is larger than the preset mean devia-tion threshold, i.e., (MRIi�MEAN(MRI)) >MeadDeviationThreshold. A node j is consid-ered less overloaded if its MRI is less than theMRI mean, i.e., (MRIj�MEAN(MRI)) < 0.



For an overloaded node i, the algorithm gener-ates the control signal �LTFij for load trans-ferring factor LTFij , the transaction workloadthat is transferred from node i to the less loadednode j. The load transferring factor incremen-tal value �LTFij is calculated using the follow-ing equation.�LTFij = PLTF � (MRIi �MRIj) +ILTF � (LTMRIi � LTMRIj)where MRIn and LTMRIn are the miss ratioindex and long term miss ratio index of noden; PLTF and ILTF are tunable system param-eters that determine the weights of MRI andLTMRI on the control signal.To avoid that two nodes both have positiveLTF s with each other and transfer transactionsback and forth, special care is needed to makesure that transactions are only transferred inone direction between two nodes. When a nodeneeds to update its LTF s for another node, itsends a message to the corresponding node forthe purpose of LTF adjustment. The LTF ad-justment process is described as follows. As-sume that node i needs to adjust its LTF fornode j.� At node i: Send �LTFij to node j. If�LTFij is larger than or equal to LTFjiat node j, add �LTFij �LTFji to LTFij ;otherwise, do nothing. (Node i has theLTFji of node j because it is broadcastwith the local performance data by nodej)� At node j: After receiving �LTFij fromnode i, if �LTFij is larger than LTFji,set LTFji to 0; otherwise subtract �LTFijfrom LTFji.{ Workload Balanced: When the mean deviationofMRI is less than the speci�ed threshold, thesystem workload is considered to be balancedand the GLB reduces the load transferring fac-tors. The LTF s are reduced in the followingway. LTFij = LTFij � 
where 0 < 
 < 1. 
 is called the LTF Re-gression Factor which regulates the load trans-ferring factors regression process. The inten-tion is to avoid transferring workload betweennodes whenever possible. It also helps removethe workload transferring circles in the system.If a LTF becomes su�ciently small (less than0.0005), it is reset to 0.
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Figure 4. Integration of Local Controller andGLBIf a node fails to collect the performance data of someother nodes during a certain period, the performancedata of the pervious period is used. This strategy worksbecause message losses are very rare in wired networks.As shown in the simulation study in the next section, us-ing history data does not cause serious problems for thecorrect functioning of the algorithm.There is a possibility that a cycle of load transferringcan be formed between nodes, although the probability isvery low. When that happens, the load transferring fac-tor regression process discussed above gradually removesthe load transferring cycles.
4.3 Integration of Local Controller and Load Bal-

ancerTo provide QoS in distributed environments, we needboth local workload control and global load balancingfunctionality. We integrate the local controller with theglobal load balancer by modifying the feedback loop inFig. 3. The modi�ed feedback loop is shown in Fig. 4.As shown in the �gure, an extra phase, LTF Adjust-ment, is added to the local controller. In this phase, thelocal controller reduces the LTF s if the speci�ed QoSis not violated and there is extra CPU time. Note thatwhen the LTF at one node is larger than zero, the nodetransfers some transactions to other nodes. When ex-tra CPU time is available, the local controller �rst re-duces the LTF s, thus reducing the workload it transfersto other nodes. When there are no local LTF s that arelarger than 0, a controller signal is used to increase thetarget utilization parameter at the admission controller,which increases the admitted transaction workload in thenext period.The system parameters used in global load balancerand their values used in this paper are summarized in



Parameter ValueMiss Ratio Weight 0 (WMR0 ) 4Miss Ratio Weight 1 (WMR1 ) 2Miss Ratio Weight 2 (WMR2 ) 0.1MRI Mead Deviation Threshold 0.1PLTF 0.02ILTF 0.02LTF Regression Factor 0.9
Table 1. System Parameter SettingsParameter ValueNode # 8Network Delay (0.05 - 1.2) ms/ pktTemp Data # 200/NodeTemp Data Size Uniform(1 - 128)bytesTemp Data AVI Uniform(0.5 - 5) secondsNon-Temp Data # 10,000/NodeNon-Temp Data Size Uniform(1 - 1024) bytes
Table 2. System Parameter SettingsTable 1.5 Performance EvaluationThe main objective of our performance evaluation isto test whether the proposed algorithm can provide thespeci�ed miss ratio guarantees even in the presence ofunpredictable workloads. We conduct a simulation studywhich varies the transaction workload and study the sys-tem performance. This section presents the results of thesimulation study.

5.1 Simulation SettingsFor the simulations, we have chosen values that are, ingeneral, representative of some on board ship control suchas found in [7]. Precise details of these systems are notavailable, but we use values estimated from the detailsthat are available. We have also chosen other values oftypical of today's capabilities, e.g., network delays.The general system parameter settings are given inTable 2. There are 8 nodes in the distributed system,each one of them hosts 200 temporal data objects and10000 non-temporal data objects. The sizes of tempo-ral data objects are uniformly distributed between 1 and128 bytes and their validity intervals are uniformly dis-tributed between 0.5 and 5 seconds. The sizes of non-temporal data objects are uniformly distributed between1 and 1024 bytes. The network delays are modelledby calculating end-to-end transmission delay for eachpacket. Depending on the packet's size (64 - 1500 bytes

Parameter ValueOperation Time 0.2 - 2 msTemp Data OP # (1 - 8) /TranNon-temp Data OP # (2 - 4 ) /TranTransaction SF 10Temp Data Skew 20%Non-Temp Data Skew 20%Class 0 Ratio 33%Class 1 Ratio 33%Class 2 Ratio 33%Remote Data Ratio 20%Exe Time Est Error Normal(20%, 10%)Arrival Rate 80 Trans/sec
Table 3. User Transaction Workload Parameter
Settingsfor Ethernet), the end-to-end delay ranges from 50 mi-croseconds to 1.2 milliseconds. If the data size exceedsone packet size, the data is put into separate packetsand the transmission delay is the sum of delays for thosepackets. The overhead of transferring transactions is ac-counted by modelling the overhead of transmitting pack-ets that contain the transactions. In the simulation, theoverhead of running controllers is not modelled. Thereason is that the controller computation procedure isnot invoked very often (in our case, once every two sec-onds) and the involved computation does not consumetoo much CPU time.The settings for user transaction workload is given inTable 3. A user transaction consists of operations ontemporal data objects and non-temporal data objects.The operation time for one operation is selected between200 microseconds to 2000 microseconds. The slack factorfor transactions is set to 10. To increase the data con-tention, we introduce Temporal Data Access Skew andNon-temporal Data Access Skew. The 20% access skewsmean that 80 percent of all transaction operations access20 percent of the data objects. The Remote Data Ra-tio is the ratio of the number of remote data operations(operations that access data hosted by other nodes) tothat of all data operations. The remote data ratio is setto 20%, which means 20 percent of all operations are re-mote data operations. In most real systems, it is almostimpossible to know the exact execution time of trans-actions. To model errors in estimating the transactionexecution time, the Execution Time Estimation Error isintroduced. It is the estimation error of the executiontime of user transactions. In our simulation, it conformsto a normal distribution with mean 20% and standarddeviation 10%. At each node, the user transaction ar-rives according to a Poisson distribution and the average
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Figure 5. Average Miss Ratio of FB-GLBarrival rate is 80 transactions per second. User transac-tion are divided into three service classes and each is onethird of all transactions.
5.2 Baseline ProtocolsTo evaluate our algorithm (FB-GLB), we compare theperformance of our algorithm with two baseline algo-rithms.� Best E�ort: The system operates in best-e�ortmanner. All arrived user transactions are admittedand no controls are taken for limiting transactionworkload or balancing load among nodes.� Local Control Only: Nodes employ only localfeedback-based controllers, which control the systemadmission process based only on local system perfor-mance data.
5.3 Simulation ResultsThe simulation results are presented in this section.Each simulation is run 10 times and 90% con�dence in-tervals are drawn for each data point. Con�dence in-tervals in some graphes are not shown to improve thereadability.5.3.1 System Performance During Normal Op-erationIn this set of simulations, the system using FB-GLB isrunning under stable system conditions. The arrival rateand access patterns of user transactions do not changeduring the simulation. From Fig. 5 we can see that theFB-GLB algorithm keeps the miss ratios of transactionsin classes 0 and 1 around zero while maintaining the CPUutilization around 95% throughout the entire simulation.
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Figure 6. Load Balancing with FB-GLB5.3.2 Load Balancing with FB-GLBThe �rst set of experiments evaluates the load balancingfunction of FB-GLB. In the experiments, we introducetwo workload bursts at one node. The bursts begin atthe 100th second and the 200th second and each one lastsfor 50 seconds. We use the mean deviation of the MRIsof nodes to show the performance of the algorithm. Asdiscussed in the previous section, the mean deviation ofmiss ratio indexes measures the performance di�erencesbetween nodes. The lower the mean deviation value, themore balanced the system workloads are.As shown in Fig. 6, the system running the best ef-fort algorithm remains unbalanced throughout the work-load burst periods; with FB-GLB, the system workloadbecome balanced (mean deviation of MRI becomes lessthan 0:1) within 5 seconds. Note that the mean deviationof miss ratio indexes stays at zero most of the time be-cause MRI is positive only when the QoS speci�cationis violated. During the normal operation, the QoS re-quirements are not violated, resulting inMRIs and theirmean deviation all equal to zero.5.3.3 Handling Transaction Workload BurstIn many soft real-time systems, the transaction workloadmay vary signi�cantly with time. The QoS managementsystem should deal with this kind of workload variationand still guarantee the speci�ed QoS requirements. Thesuccessful operation in such a situation is crucial for QoSmanagement systems for distributed environments. Totest whether our system provides good transaction ser-vices in such situations, we conduct a set of simulationswhere two out of eight nodes are severely overloaded.At the 100th and 200th seconds of the simulation, theworkload at two nodes suddenly increased to 300% ofthe normal workload. The two workloads each last for 50seconds.As shown in Fig. 7, for the best-e�ort algorithm, QoS
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Figure 7. System Performance (Two Nodes are
Overloaded)
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Figure 8. Load Balancing with Message Lossrequirements are violated and the miss ratio of class 1transactions remains over 90%. For the system runningonly the local control algorithm, the miss ratio of class1 transactions exceeds the QoS requirement during theworkload burst period and the control algorithm does notseem to be able to keep MR1 around the speci�ed 10%.For the system running FB-GLB, the system adapts tothe workload burst very quickly and MR1 returns tospeci�ed 10% within 5 seconds.As shown by the �gure, the throughput of the sys-tem is not seriously a�ected by our QoS managementalgorithm. The system that runs FB-GLB has almostthe same throughput as the system that runs only localcontrollers. The two algorithms shows lower throughputwhen the arrival bursts end at the 150th and 250th sec-onds because the two algorithms both reduce transactionadmission rate for class 1 and class 2 transactions duringthe transaction workload bursts. Their throughput grad-ually catches up with the throughput of the best e�ortalgorithm after the burst.5.3.4 Performance with Message LossIn our decentralized load balancing algorithm, each nodeneeds to exchange its performance data with other nodesperiodically. It is possible that one node may not be ableto collect the performance data of all the other nodes.When that happens, the node uses the performance datafrom the pervious period. This set of simulations evalu-ates the performance of that strategy. In the simulations,we created transaction bursts at one node and measuredthe performance of algorithms with a 10% message lossrate. The results are shown in Fig. 8 and Fig. 9.As shown in Fig. 8, the mean deviation of MRIs iskept below 0.1 immediately after each transaction arrivalburst, which means the load balancing functionality ofthe algorithm is not a�ected by the 10% message loss.As shown in Fig. 9, the miss ratios of class 0 and class



0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300

M
ea

n 
D

ev
ia

tio
n 

of
 M

R
I

Time (seconds) 

Mean Deviation of MRI

Mean Deviation

Figure 9. Miss Ratio at Overloaded Node (with
Message Loss)1 transactions at the overloaded node are kept below thespeci�ed level and the QoS is maintained.6 Related WorkSince the major publication by Abbott and Garcia-Molina [1] in 1988, real-time databases received a lotof attention. A breath of research topics in real-timedatabases have been studied, including concurrency con-trol [10] [26], scheduling algorithms [9] [13], security [21][17] and recovery [20], to name a few.Distributed real-time database research has drawn at-tention in recent years [15] [23]. In [8], Ginis et. al.discussed the design of open system techniques to inte-grate a real-time database into a distributed computingenvironment. Concurrency control mechanisms for dis-tributed real-time databases are studied in [15]. Lee et.al. [16] built a model for wireless distributed real-timedatabase systems and performed simulation experimentsto identify the e�ect of wireless bandwidth on the per-formance of distributed real-time database systems. In[25], a state-conscious concurrency control protocol calledMIRROR is proposed for replicated real-time databases.However, to the best of our knowledge, no research resultshave been published for providing data services with QoSguarantees in distributed real-time database systems.Feedback control has been applied to QoS manage-ment and real-time scheduling due to its robustnessagainst unpredictable operating environments [24] [4]. In[19], Lu et. al. proposed a feedback control real-timescheduling framework called FC-UM for adaptive real-time systems. Stankovic et. al. [22] presented an e�ec-tive distributed real-time scheduling approach based onfeedback control. Kang et. al. [12] proposed an archi-tecture to provide QoS guarantees for centralized mainmemory databases. In this paper, we proposed a heuris-

tic feedback-based dynamic load sharing algorithm andintegrated it with the local control algorithm to provide aQoS management in distributed real-time database sys-tems.Load balancing has been a research topic for generaldistributed systems for many years [6] [5]. In those sys-tems, the system performance is often measured by sys-tem throughput, but QoS real-time guarantees are notconsidered as the most important performance metric.Further, they have not dealt with the issues of transac-tion deadlines and data freshness.7 Conclusion and Future WorkThe demand for real-time data services in mid-sizedistributed applications such as ship control is increas-ing. The complexity and non-determinism of these ap-plications produce a need for QoS guarantees rather than100% guarantees. Our solution, using feedback control,meets steady state miss ratio and transient settling timerequirements. The solution is shown to be appropriatefor an important class of mid-size distributed real-timesystems as represented by today's ship-board control sys-tems.We plan to extend this work in several ways. Onedirection is to extend the algorithm so that it scales tolarge distributed systems. In large distributed systems,each node will not collect performance data of all nodesperiodically. Instead, the load balancing algorithm willbalance transaction workloads only among nearby nodes.Partial data replication and e�cient replica managementalgorithms will also be added because full replication isine�cient or impossible in large distributed systems. De-rived data management is another interesting extensionbecause derived data is of particular interest for somereal-time database applications such as e-commerce andonline stock trading systems.References[1] R. Abbott and H. Garcia-Molina. Scheduling real-timetransactions. SIGMOD Record, 17(1):71 { 81, 1988.[2] R. Abbott and H. Garcia-Molina. Scheduling real-timetransactions: A performance evaluation. ACM Transac-tions on Database Systems, 17(3):513{560, 1992.[3] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, S. Haldar,S. Joshi, A. Khivesera, H. Korth, P. McIlroy, J. Miller,P. P. S. Narayan, M. Nemeth, R. Rastogi, S. Seshardi,A. Silberschatz, S. Sudarshan, M. Wilder, and C. Wei.DataBlitz storage manager: Main memory databaseperformance for critical applications. ACM SIGMODRecord, 28(2):519{520, 1999.
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