
CSC 411 Assignment:

Interfaces, Implementations, and Images
Interfaces and design for part A Friday, Sept 29th at 11:59PM. Full assign-
ment (all of parts A, B, and C) due Friday, Oct 6th at 11:59PM.

Please read the entire assignment before starting work.

Purpose
This assignment has four goals:

1. To spur you to think more deeply about programming technique
2. To give you practice designing your own interfaces, not just using interfaces

designed by other people
3. To give you practice thinking about what familiar algorithms and data

structures you can use to solve new problems
4. To lay a foundation for future assignments. In these future assignments,

• You will learn about locality, its effects on performance, and how to
change the locality of a program.

• You will understand how data structures in a high-level language
map to machine structures, and how to improve space performance
by programming directly with machine structures.

• You will learn to improve the performance of programs by code tuning

The abstractions you build in this assignment will help you represent and
manipulate digital images.

Preliminaries
• Be sure you are familiar with the Vec interface provided by the standard

library: https://doc.rust-lang.org/std/vec/struct.Vec.html
• Rust By Example has a good chapter on Iterators that is worth reading:

https://doc.rust-lang.org/rust-by-example/trait/iter.html

Part A: Two-Dimensional, Polymorphic Arrays
The Rust standard library provides the Vec, which implements polymorphic
one-dimensional arrays. Now, a two-dimensional analog of a vector is usually
referred to as a matrix but the term ‘matrix’ carries the connotation of containing
numbers and being used for linear algebra. Since the purpose here will be to
support images (2-dimensional collections of pixels), we will use the term array.
For this part of the assignment, you’ll adapt the vector abstraction to support
two-dimensional arrays. Your adaptation will be called Array2 and should be
polymorphic, just as Vec<T> is polymorphic. Your adaptation should include
the following changes when compared to a Vec:
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• Instead of a length, an Array2 will have a width and a height.
• Instead of being identified by a single index, an element of an Array2 will

be identified by two indices: the column or x index measures the distance
between the element and the left edge of the array, while the row or y
index measures the distance between the element and the top row of the
array. Thus the top left element is always indexed by the pair (0,0).

• You will want to support several kinds of iterators on your array. In par-
ticular, you must support row-major and column-major iteration. We
suggest you name these functions iter_row_major and iter_col_major,
respectively. Row-major refers to visiting every element of the first row
in order by column, followed by every element of the second row, and so
forth. Column-major refers to visiting every element of the first (left-most)
column, followed by every element of the second column, and so forth.

• Recall that an Iterator implementation has a next() function, as well
as an Item defined.
– An Item need not just be the T element contained within your array2;

it could be a data structure with more information about where that
T lives in your array2, for instance.

– A common “lightweight” data structure to use here is a tuple, whose
elements can be accessed by index rather than name.

Hints:

• The key to this problem is to set up an implementation in which the
elements of your two-dimensional array are in one-to-one correspondence
with elements of one or more one-dimensional Vecs. The key question to
answer is:

How do you relate each element in a two-dimensional array to a
corresponding element in some one-dimensional Vec?

If you have a precise answer to this question, the code is pretty easy to get
right.

• Don’t worry about performance; aim for simplicity. If you feel compelled
to worry about performance, you may make simple code improvements pro-
vided you justify them. Don’t try anything radical; premature optimization
is the root of much evil.

• Think carefully about how the next() function for the Iterator imple-
mentation should behave.

– Depending on your choice of underlying representation, one map
function might be blindingly simple, while the other might be more
work.

• Don’t worry about the macros that can be used for literal vector construc-
tion. You might use those macros in your constructors, but you do not
need to implement a macro to create an Array2.
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• You will need some reasonable constructors:

– Something like a from_row_major constructor might be useful; it
might take the elements of an array in row-major order as the name
implies.

– You might also want a from_col_major constructor.
– You might want a “blank slate” constructor that allows for a single

value to be copied to each element. Note that since this is a polymor-
phic datatype, you don’t know what this element will be. Having it
be the integer value 0 does not make sense. Consider the following
macro usage: let data = vec![val; width * height];

• You do not need to worry about providing element access using square
bracket notation

– you probably do want to provide a function that allows access to an
element by a pair of coordinates

• You will want to create this project using cargo’s lib mode:

– cargo new --lib array2

move and Box:

You may need to use the move keyword to implement your iterators. This
keyword is used when a function needs to take ownership of a variable that was
originally defined outside of the scope of that function.

Let’s work through an example:

pub fn is_too_big_builder(threshold: u32) -> Box<dyn Fn(u32) -> bool> {
Box::new(move |value: u32| value > threshold)

}

At first glance, this seems like a complicated function. Let’s break down the
signature:

• The function is_too_big_builder takes a single argument, threshold.
• It returns a Box of a new function.
• That returned function takes a u32 and returns a bool.
• The returned function lives on the heap, and we get a Box, i.e. a pointer,

to it.

Let’s move on to the body:

• Box::new(...) creates a new pointer to something living on the heap.
Whatever lives on the heap has to be passed to Box::new.

• |value: u32| value > threshold is a closure, i.e. an anonymous func-
tion, that takes one value of type u32 and returns whether or not value
is greater than threshold (a boolean value).

• Note the move keyword:
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– threshold was originally defined in the signature for is_too_big_builder,
i.e. before the closure was created.

– The closure uses threshold directly, i.e. by value instead of by refer-
ence.

– Therefore, the closure needs to take ownership of threshold.
– In other words, the ownership of threshold needs to be moved from

the builder to the closure.

Here’s an example of the builder being used:

#[test]
fn test_builder() {

let is_over_nine_thousand = is_too_big_builder(9_000);

assert!(is_over_nine_thousand(12_000)); // True
assert!(is_over_nine_thousand(6_000)); // False

}

How to construct an Array2

• Unlike in C, you cannot create a data structure with allocated but unini-
tialized elements
– Ok, this is a bit of a lie
– You can use MaybeUninit in unsafe Rust: https://doc.rust-

lang.org/nomicon/unchecked-uninit.html
– But this is too advanced for what we want to do right now

• At a minimum, you want a from_row_major() constructor that takes a
vector of elements in row-major order, and a set of dimensions

There will undoubtedly be more hints along the way!

Part B: Using the Array2 abstraction to identify Sudoku
solutions
Write the test program sudoku. It takes as input a single portable graymap file,
which may be named on the command line or may be given on standard input.
Your program must not print anything, but if the graymap file represents a
solved sudoku puzzle, your program should call exit(0); otherwise it should call
exit(1). A solved sudoku puzzle is a nine-by-nine graymap with these properties:

• The maximum pixel intensity (aka the denominator for scaled integers) is
nine.

• No pixel has zero intensity.
• In each row, no two pixels have the same intensity.
• In each column, no two pixels have the same intensity.
• When the nine-by-nine graymap is divided into nine three-by-three submaps

(like a tic-tac-toe board), in each three-by-three submap, no two pixels
have the same intensity.
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Here's an example (which you can also view as an image in /csc/411/images/sudoku/sudoku.pgm):

P2
9 9
# portable graymap representing a sudoku solution
9
1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8

• In the above example, we have added spaces between three-by-three
submaps purely for cosmetic reasons. The actual .pgm files given to
you will not have such spaces.

If a user uses sudoku in a way that violates its specification, you should terminate
with a checked run-time error (any will do). Read the specification carefully!

Note that for testing what return value your program exits with for a given
input, you can examine the special shell variable $? which shows the return
value of the last command. Thus, immediately after running sudoku, you can
run:

echo $?

Just as in the Intro assignment, you can (and should) use the crate csc411_image
which we wrote for you.

In particular, it provides a read function that takes an Option<&str> which
is intended to be a filename. If the value of the Option<&str> is None, it will
instead read from stdin. Thus, all you need to do is determine whether the
command-line arguments include an argument (i.e. if env::args() has more
than one element) and if so, pass that as an argument to read(); otherwise,
pass None to read().

In particular, a GrayImage looks like this:

pub struct GrayImage{
pub pixels: Vec<Gray>,
pub width: u32,
pub height: u32,
pub denominator: u16

}
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The pixels are stored in row-major order, so should be easy to read into your
Array2

• You’ll want to create this project using cargo’s “bin” mode:
– cargo new --bin sudoku

Dependencies

Your sudoku program will need two dependencies: the csc411_image crate we
provide, and your own array2 crate.

Inside your sudoku project, your Cargo.toml should have something like this:

[dependencies]
csc411_image = "0.3.4"
array2 = { path = "../array2" }

Part C: Programming technique
Meet with your partner and identify one programming technique that meets
either of these two criteria:

• One of you has incorporated it into your programming practice since the
start of the semester.

• One of you would like to incorporate it into your programming practice by
the end of this term.

Your assignment is to describe the technique in enough detail that a
student halfway through CSC 212 could put it into practice. Use at
most one page.

You should submit your description in a plain text file called technique.txt,
or if you prefer, a PDF file called technique.pdf.

Expectations for your solutions
Your course instructor has thought of several ways to solve part A. Representation
is the essence of programming! Your major design decision will be how to
represent an Array2. Two obvious alternatives, both of which acceptable and
each of which has variations, are

• To represent a Array2 as a nested Vec< Vec<T> >.
• To represent a Array2 as a single Vec<T>.

What is not acceptable is to clone and modify the Vec implementation
or any existing 2D array implementation. Your new code should be a client
of the standard library, and you should rely on Vec to do the heavy lifting.

If you’re concerned about performance, don’t worry—we’ll make a
careful study of it throughout the term, and you’ll have a chance to
revisit and improve your implementation.
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Common mistakes
Avoid these common mistakes:

• The indices into a two-dimensional array, whether they are called x and
y or i and j or r and c or row and column, are always both integers.
The only way to distinguish them is which one appears first. A common
mistake is to use different orders in different parts of your code. Choose
one order or the other and put it first consistently in all your code.

• This is a case where good names matter

Organizing and submitting your solutions
Design

For the design document, submit a lib.rs and a design.pdf file which describes
your design:

lib.rs
design.pdf

Your lib.rs does NOT need to compile, and we will not attempt to compile
it. However, it should indicate the fields of your Array2 struct, as well as the
function signatures (not bodies) for the essential functions in your interface.

For example, suppose your Array2 had just two fields, width and height, and
there was a single function for creating an Array2 with specified dimensions
(obviously, this would be an incomplete design!). Then your lib.rs might look
like:

/// Elements contained must implement `Clone`.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Array2<T: Clone> {

width: usize,
height: usize,

}

impl<T: Clone> Array2<T> {
/// Creates a new `Array2`.
///
/// # Arguments
///
/// * `width`: the width of the `Array2`.
/// * `height`: the height of the `Array2`.
pub fn new(width: usize, height: usize,) -> Self {

}
}
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Your design file should contain a design checklists (see design-adt.pdf on EdStem)
for the Array2 abstraction. We are especially interested in items 1, 2,
and 4 from the checklist. If you are confident of your design, you can skip the
other items.

Upload your design to the iii-design assignment on Gradescope.

Implementation

Your best bet is to first create a iii directory with the mkdir command:

• mkdir iii

And then within that, create the two cargo projects:

• cargo new --bin sudoku

• cargo new --lib array2

• In your final submission, don’t forget to include a README file which

– Identifies you and your programming partner by name
– Acknowledges help you may have received from or collaborative work

you may have undertaken with classmates, programming partners,
course staff, or others (ask me sometime about Otis the debugging
dog)

– Identifies what has been correctly implemented and what has not
– Contains the critical parts of your design checklists
– Says approximately how many hours you have spent complet-

ing the assignment

• Your submission should include at least these files:

iii/
README.{md/txt/pdf}
sudoku/

Cargo.toml
src/

main.rs
array2/

Cargo.toml
src/

lib.rs
technique.{txt/pdf}

– You may have more .rs files in the src directories to help you better
modularize your code. If you do have such files, you will need use
statements referring to them in lib.rs/main.rs.

A reasonable zip command will be something like (while sitting in the parent
directory of iii):
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zip -r iii.zip iii -x "iii/*/Cargo.lock" "iii/*/target/**" "iii/*/.git/**"

Upload your zip archive to Gradescope under the assignment iii
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