
CSC 411 Assignment: Locality and the costs of
loads and stores

Designs and experimental estimates due Friday, Oct 20th, at 11:59 PM. Full
assignment due Friday, Oct 27th, at 11:59 PM.

READ THIS ENTIRE DOCUMENT FIRST
Overview and purpose
This assignment is all about the cache and locality. You’ll implement an image-
rotation program which uses your Array2 from the last assignment, which you’ll
then use to evaluate the performance of image rotation using three different
array-access patterns with different locality properties.

The assignment has two parallel tracks:

1. On the design and building track, you will implement image rotation, which
may require some changes to your Array2 implementation.

2. On the experimental computer-science track, you will predict the costs of
image rotations, and later measure them. Your predictions will be based on
knowledge of the cache as covered in Chapter 6 of Bryant and O’Halloran
and as covered in class.

Problems
Part A (design/build): ppmtrans, a program with straightforward lo-
cality properties

You now have a representation of two-dimensional arrays: Array2, which supports
column-major and row-major mapping with either column-major or row-
major storage. Being clear about your storage model is essential.

Using Array2 implement program ppmtrans, which is modelled on jpegtran
and performs some simple image transformations. Program ppmtrans offers a
subset of jpegtran’s functionality. The image-transformation options you may
support are as follows:

--rotate 90
Rotate image 90 degrees clockwise.

1

--rotate 180
Rotate image 180 degrees.

--rotate 270
Rotate image 270 degrees clockwise (or 90 ccw).

--rotate 0
Leave the image unchanged.

--flip horizontal
Mirror image horizontally (left-right).

--flip vertical
Mirror image vertically (top-bottom).

--transpose
Transpose image (across UL-to-LR axis).

You must implement both 90-degree and 180-degree rotations. Other
options may be implemented for extra credit; if you choose not to implement
them, reject the unimplemented options with a suitable error message written
to stderr and a nonzero exit code.

Significant requirements:

Your program must also recognize and implement these options:

--row-major
Copy pixels from the source image using iter_row_major
(with an Array2)

--col-major
Copy pixels from the source image using iter_col_major
(with an Array2)

• You must use the row_major and col_major iterators defined
in your Array2, not nested for loops over ranges of coordinates. - So
this is ok: for (col, row, pix) in src.iter_row_major() { ... } -
This is not: for col in 0..width { for row in 0..height { ... }
}

• For row-major and column-major mapping, you will use the Array2 module,
with whatever native storage (row- or column-major) you chose when you
designed it.

Your ppmtrans should read a single ppm image either from standard input or from
a file named on the command line. Your ppmtrans should write the transformed
image to standard output. For help handling command-line options, see the
suggested code at the end of this assignment.

2

Why this problem is interesting from a cache point of view:

If cells in a row are stored in adjacent memory locations, processing cells in
a row has good spatial locality, but it’s not clear about processing cells in a
column. If cells in a column are stored in adjacent memory locations, processing
cells in a column has good spatial locality, but it’s not clear about processing
cells in a row. In a 90-degree rotation, processing a row in the source image
means processing a column in the destination image, and vice versa. Thus,
the locality properties of 90-degree rotation are not immediately obvious. In
a 180-degree rotation, rows map to rows and columns map to columns. Thus,
whatever locality properties are enjoyed by the source-image processing are
enjoyed equally by the destination-image processing. If you understand how
your data structure works, then, you should find it easier to predict the locality
of 180-degree rotation.

Part B (experimental): Analyze locality and predict performance

This part of the assignment is to be completed at the same time as your design
work for parts A and B. Please estimate the expected cache hit rate for
reads of each of the four operations in the table below. Assume that the images
being rotated are much too large to fit in the cache.

row-major access column-major access
90-deg rotation
180-deg rotation

Your estimate should be a rank between 1 and 4, with 1 being the best hit
rate and 4 being the worst hit rate. If you think two operations will have about
the same hit rate, give them the same rank. For example, if you think that both
column-major rotations will have the most cache misses and will have about the
same number of cache misses, rank them both 3 and rank the other entries 1 to
2.

Justify your estimates on the grounds of expected cache misses and locality.
Your justifications will form a significant fraction of your grade for this part.

Unfortunately, measuring hit rates is not so easy (although valgrind can do a
lot). But what we are really interested in is the effect of locality on performance.
We are therefore also asking you to predict the relative performance of each
algorithm. But do make some simplifying assumptions:

• As before, assume that the images being rotated are much too large to
fit in the cache.

• Assume that all function calls cost the same, and that each algorithm does
the same number of function calls.

• Assume that the cost model for stores is approximately the same as the
cost model for loads: if the store modifies a line already in the cache, the

3

cost is about one cycle, but if the store writes an address that is not already
in the cache, it costs about as much as a cache miss. [This assumption
oversimplifies the cache’s behavior significantly, but it will be good enough
to enable reasonable predictions of performance.]

• Assume that the differences in performance are determined entirely by
the amount of time spent in the closures called by the iterators.

Under these assumptions, estimate the following quantities for each algorithm:

1. How many addition or subtraction operations are done for each pixel in
the image?

2. How many multiplication operations are done for each pixel in the image?
3. How many division or modulus operations are done for each pixel in the

image?
4. How many comparison operations (equality, less than, and so forth) are

done for each pixel in the image, not forgetting any loop-termination
conditions? [*]

5. How many loads are done for each pixel in the image?
6. Of those loads, what fraction hit in the cache?
7. How many stores are done for each pixel in the image?
8. Of those stores, what fraction are to lines that are already in the cache?

If the answers to questions 1–5 and 7 are the same for two different algorithms,
the relative performance will be determined only by the cache performance. If
the answers to questions 1–5 and 7 are significantly different, you may find that
a lot of arithmetic may cost more than a modest difference in the cache-miss
rate. (As a rule of thumb, add and subtract cost the same as a load that hits in
the cache, a multiply costs a bit more, and division/modulus cost even more.
Comparisons vary, but in a well-behaved program a comparison typically costs
about the same as an add or subtract.)

op + - muls
divs
mods comps loads hit rate stores hit rate

180R
180C
90R
90C

Once you have estimated the expected cost per pixel, please estimate the expected
speed of each of the four operations in the table below. Your speed estimate
should include the cost of stores as well as the cost of loads.

Your estimate should be a rank between 1 and 4, with 1 being the fastest and 4
being the slowest. If you think two operations will go at about the same speed,
give them the same rank. For example, if you think that both column-major
rotations will be the slowest and will run at about the same speed, rank them

4

both 3 and rank the other entries 1 to 2.

row-major col-major
180 degree
90 degree

To complete this problem successfully, you will need to understand the material
presented in class and in Chapter 6 of Bryant and O’Hallaron.

Part C (experimental): Measure and explain improvements in locality

This part of the assignment is to be completed after you have a complete,
working implementations of ppmtrans. Please measure the speed of each of
the operations in following table:

row-major col-major
180 degree
90 degree

One problem is that on modern systems, the time spent doing the rotation
might be dwarfed by the time spent reading in a large image. So, rather than
benchmarking the entire program, you should benchmark only the time spent
doing rotations

Specifically, try something like:

use std::time::Instant;

/* eliding code to handle command-line arguments */

/* eliding code to read in source image
and create destination array */

// benchmark only the rotation
let now = Instant::now();

/* eliding some map_row_major or
map_col_major code to do the rotation */

let elapsed = now.elapsed();
eprintln!("{:.2?}", elapsed);

5

Explain your measurements.
• Explain how your measurements matched or did not match your predictions

from Part B
• Explain why if they did not match your predictions.

In order to see any effects, you must use images that are too large to fit in
the cache. Your fastest rotation should take several seconds; if it does not, you
need a larger image.

• You will find a very small supply of large images in /csc/411/images/large
on homework, as well as on EdStem.

• You can create your own large image by using any JPEG file with djpeg
and pnmscale. Experiment until you get something of reasonable size.

Example command lines:

djpeg /csc/411/images/large/egrets.jpg |
target/release/ppmtrans --rotate 90 | display -

djpeg /csc/411/images/large/winter.jpg | pnmscale 1.2 |
target/release/ppmtrans --rotate 180 > /dev/null

target/release/ppmtrans --rotate 90 --row-major < path/to/blackpoint.ppm > destination.ppm

Be sure all your measurements are done with the same image to the
same scale

Part D (theoretical): Reason about a memory layout that might per-
form better

• Particularly for 90-degree rotations, can you come up with a design (a
memory layout) that might exhibit better cache locality than the one you
chose?

• Please don’t write a design document, just describe the Array2 conceptually
• Don’t write any code for this

Where to get what

You’ll want to create a directory called locality to hold your entire project.

You may wish to copy (rather than move) your array2 project from the previous
assignment into that locality directory; you’ll want to also create the ppmtrans
project with:

cargo new --bin ppmtrans
cd ppmtrans
cargo add csc411_image@0.5

6

If you do not have a working Array2 from assignment 2, you may
use the official solution or use one from a classmate. You must give
credit to the authors in your README.

Geometric calculations we have done for you

What’s important about this assignment is how locality of memory accesses
affects performance, not how to rotate images. We therefore inform you that
we believe:

• If you have an original image of size w × h, then when the image is rotated
90 degrees, pixel (i, j) in the original becomes pixel (h − j − 1, i) in the
rotated image.

• When the image is rotated 180 degrees, pixel (i, j) becomes pixel (w − i −
1, h − j − 1).

What we expect from your preliminary submission
Your preliminary submission should include your design work for part A as well
as all of part B.

For Part A, please use the design checklist (design-pgm.pdf) for writing
programs. We are especially interested in knowing what additional
components you plan to use to implement ppmtrans and how those
components work together to solve the problem. We expect you to
describe a modular architecture and to exploit procedural abstraction.

Major hint for the design

Again, the checklist is for you. What we want to see are modules, invariants
for your image transformations, and what subproblems might be abstracted
and reused. You should also highlight some example inputs and outputs (as a
diagram or a sketch, for instance). This might help you get your invariants right.

A design that says “given an image, the result will be that image rotated
clockwise” will get no credit.

A design that says something like “given a pixel at coordinates (x,y), the resulting
image will have that pixel value at coordinates (?,?),” but with something concrete
in place of the question marks, will fare much better.

The estimates are also essential

Please submit two text files:

DESIGN(.txt or .pdf or .md) for your design work for Part A. ESTIMATES(.txt
or .pdf or .md) for your estimates of locality, work per pixel, and total cost

7

What we expect from your final submission
Your implementation, to be submitted on Gradescope, should include

• A README.txt or .md or .pdf file which
– Identifies you and your programming partner by name
– Acknowledges help you may have received from or collaborative work

you may have undertaken
– Identifies what has been correctly implemented and what has not
– Documents the architecture of your solutions.
– Gives measured speeds for Part C and explains them.
– Reasons about a possible answer for Part D.
– Says approximately how many hours you have spent completing the

assignment
• Source code for array2 and ppmtrans

– if you borrowed someone else’s array2, your README must explain
this

You should zip up your submission similarly to past projects.

A reasonable zip command will be something like (while sitting in the parent
directory of locality):

zip -r locality.zip locality -x "locality/*/Cargo.lock"
"locality/*/target/**" "locality/*/.git/**"

Avoid common mistakes

Here are the mistakes most commonly made on this project:

• It’s a mistake to submit, in place of an invariant, a narrative description
of a sequence of events.

• It’s a mistake to try to explain a complex invariant in informal English.
• It’s a mistake to analyze a rotation experiment if the rotation completes

in less than a few seconds.
• When two programs perform very differently, and the programs have very

different loop structures, it’s a mistake to try to explain performance
differences by appealing to locality.

Handling command-line options

You are encouraged to use the clap command-line argument processing crate,
which is well-documented and used by several major Rust projects. Some infor-
mation is in the Rust CLI book here: https://rust-cli.github.io/book/tutorial/cli-
args.html

You can use cargo add clap --features derive inside your ppmtrans direc-
tory to add the latest version of CLAP to your dependencies.

As an example, consider the following snippet:

8

use clap::Parser;
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]

struct Args {
// Flip
#[clap(long = "flip", required = false)]
flip: Option<String>,
// Rotation
#[clap(short = 'r', long = "rotate")]
rotate: Option<u32>,
// Transposition
#[clap(long = "transpose")]
transpose: bool,

}

fn main() {
let args = Args::parse();
let rotate = args.rotate;

}

9

	READ THIS ENTIRE DOCUMENT FIRST
	Overview and purpose
	Problems
	Part A (design/build): ppmtrans, a program with straightforward locality properties
	Part B (experimental): Analyze locality and predict performance
	Part C (experimental): Measure and explain improvements in locality

	Explain your measurements.
	Part D (theoretical): Reason about a memory layout that might perform better
	Where to get what
	Geometric calculations we have done for you

	What we expect from your preliminary submission
	Major hint for the design
	The estimates are also essential

	What we expect from your final submission
	Avoid common mistakes
	Handling command-line options

