
CSC 411 Assignment: Integer and Logical
Operations

Designs due Friday, November 3rd, at 11:59 PM. Full assignment due Friday,
November 10th, at 11:59PM.

Purpose, overview, and instructions
The primary purpose of this assignment is to give you practice unpacking and
repacking representations that put multiple integers (both signed and unsigned)
into a word. You’ll also learn to analyze two’s-complement arithmetic so that
you know how many bits are needed to store the results of calculations, and
when not enough bits are available, you’ll know how to adapt your code. You’ll
be exposed to some of the horrors of floating-point arithmetic.

As a minor side benefit, you’ll also learn a little bit about how broadcast color
TV works (or worked, now that it is obsolete) as well as the basic principle
behind JPEG image compression (which is far from obsolete).

This assignment is inspired by Norman Ramsey at Tufts University.

Here’s what you’ll do:

• Write and test linear bijections: a discrete cosine transform and a bijection
between RGB and component video (Y /PR/PB) color spaces.

• Write functions to put a small integer into a word or extract a small integer
from a word. You’ll work with both signed and unsigned integers.

• Write a lossy image compressor that takes a PPM image and compresses
the image by transforming color spaces and discarding information that is
not easily seen by the human eye.

There is a long story below about the representation of color and brightness
and the use of techniques from linear algebra for image compression. The story
is interesting and important, but the real reason you’re doing this work is to
give you a deep understanding of the capabilities and limitations of machine
arithmetic. The amount of code you have to write is fairly small, certainly under
400 lines total. But to understand what code to write and how to put it together,
you will have to analyze the problem.
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Once your design document is complete and submitted, begin by running

mkdir arith
cd arith
git clone https://github.com/ndaniels/bitpack
cargo new --bin rpeg

You will now have the appropriate directory structure for this project: you start
with the stub of bitpack that I created for you, and you create a new binary
crate rpeg for image compression.

Dependencies
You will need the crates csc411_arith and csc411_image. Appropriate use
statements will look like:

use csc411_image;
use csc411_arith;

Note that these might not belong in the same file.

Here we provide a reasonable starting point for main which you may use:

Contents of main.rs

use std::env;
use rpeg::codec::{compress, decompress};

fn main() {
let args: Vec<String> = env::args().collect();
let argnum = args.len();
assert!(argnum == 2 || argnum == 3);
let filename = args.iter().nth(2).unwrap();
match args[1].as_str() {

"-c" => compress(Some(filename)),
"-d" => decompress(Some(filename)),
_ => {

eprintln!("Usage: rpeg -d [filename]\nrpeg -c [filename]")
}

}
}

You will also need a lib.rs:

pub mod codec;

And finally, a codec.rs:

use csc411_image;
pub fn compress(filename: Option<&str>) {

todo!();
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}

pub fn decompress(filename: Option<&str>) {
todo!();

}

You’ll also need to copy your array2 directory from the iii project. If you do
not have a working array2, please contact the course staff. If you do this, be
sure to acknowledge the receipt of array2 in your readme.

You might need to modify your array2 or ours in able to provide the pixels to
csc411_image::Image::write() in row-major order.

The dependencies section of your Cargo.toml should look like this:

[dependencies]
csc411_image = "0.5.0"
csc411_arith = "0.1.0"
array2 = { path = "../array2" }
bitpack = { path = "../bitpack" }

Problem-solving technique: stepwise refinement, analysis,
and composition
In CSC 411, you practice solving problems by writing programs. You’ll find
problem-solving more difficult (and more satisfying) than simply writing a pro-
gram someone has told you to write. To solve the problem of image compression,
we recommend a technique called stepwise refinement.

When using stepwise refinement, one analyzes a problem by breaking the problem
into parts, which in turn can be broken into subparts, and so on, until the
individual sub-sub-parts are either already to be found in a library or are so easy
as to be quickly solvable by simple code. Each individual subpart is solved by a
function or by a collection of functions in a module. Each solution is written as
another function, and so on, all the way up to the main function, which solves the
whole problem. In other words, the solution to the main problem is composed of
solutions to the individual parts.

To design software systems successfully, you must master the techniques of
analysis and composition.

Keep in mind these units of composition:

• The function should do one, simple job.
• The interface to an abstract data type packages an important abstraction

in the world of ideas and makes it usable in a computer program. Such an
interface hides representation, promoting reuse.

• Other interfaces can also promote reuse. Here are two useful design
principles for interfaces:
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– Package together collections of functions that operate in the same
problem domain. Examples might include statistical functions (mean,
variance, covariance, and so on) or linear-algebra functions (inner and
outer products, matrix multiply, matrix inversion, and so on).

– Package together functions that share a secret. The idea is to hide
the secret so you enable modular reasoning: the rest of the program
doesn’t know the secret, so it can depend only on the functions
in the interface. A good example of this kind of interface is the
csc411_image interface, which hides the secret that each kind of
PNM file has two different on-disk representations, as well as hiding
the details of those representations.

In C, each interface is expressed in .h file, and it normally is implemented by a
single .c file. In Rust, on the other hand, all code lives in .rs files, but functions
and structs are made public with the pub keyword.

We will evaluate your work according to how well you organize your
solution into separate files.

What we provide for you
All files we provide will be on crates.io, or else you will acquire them using
git or create them with cargo new The files include:

• bitpack.rs as a stub for the bitpack crate. It has all public function
signatures, but you must implement the function bodies. You may very
well wish to write additional non-public functions as helpers within this
crate; you should not need to write any additional public functions.

• The file codec.rs, whose initial contents are above. You will need to
implement the compress() and decompress() functions.

• lib.rs within the rpeg crate, whose contents are given above.
• Cargo.toml within the rpeg crate, whose contents are given above.
• The crate csc411_arith, available via crates.io (so you need only put it

as a dependency in your Cargo.toml).
• The crate csc411_image, available via crates.io (so you need only put it

as a dependency in your Cargo.toml).
• The crate csc411_rpegio, available via crates.io (so you need only put it

as a dependency in your Cargo.toml). Documentation is here

What we expect from you
Your design document, called DESIGN, DESIGN.pdf, DESIGN.txt, or
DESIGN.md (lowercase alternatives are also fine) to be submitted via Gradescope,
should describe your overall design, and it should also include separate
descriptions of each component. Your sections on the bitpack crate and on
parts of the rpeg program can be relatively short, since in these cases we have
done some of the design work for you. But you should have a detailed plan for
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testing each of these components.

Also, your rpeg program should not be implemented as a single component.
Your design document should not only explain how rpeg is to be implemented
by a combination of components, but should also present a separate design
description of each component.

The following elements of your design document will be critical:

• Separate documentation of the architecture of each major component as
well as the overall architecture.

• Architecture sections that identify modules, types, and functions by name.
Choosing good names is valuable, so do it early. Formal definitions or
declarations of your types and functions are not necessary at this stage;
if you prefer not to write Rust code yet, just sketch the types’ definitions
and functions’ specifications in concise, informal English.

• You must have a plan for testing each individual component in isolation.
The testing can be simple, but if you don’t do it, your compressor won’t
work. Your best bet is to write down universal laws and write code to be
sure that they hold on a variety of inputs.

Finally, here is a question that is not critical but that I would like
you to answer in your design document:

• An image is compressed and then decompressed. Identify all the places
where information could be lost. Then it’s compressed and decompressed
again. Could more information be lost? How?

Your implementation, to be submitted via Gradescope, should include:

arith/
README.md {or .txt or .pdf}
array2/

Cargo.toml
src/

array2.rs
lib.rs

bitpack/
Cargo.toml
src/

bitpack.rs
lib.rs

rpeg/
Cargo.toml
src/

codec.rs
lib.rs
main.rs
-- additional .rs files based on your design --
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A reasonable zip command is:

zip -r arith.zip arith -x "arith/*/Cargo.lock" "arith/*/target/**" "arith/*/.git/**"

• The README file should:
– Identify you and your programming partner by name
– Acknowledge help you may have received from or collaborative work

you may have undertaken with others
– Identify what has been correctly implemented and what has not
– Explain the architecture of your solution
– Say approximately how many hours you have spent analyzing the

problems posed in the assignment
– Say approximately how many hours you have spent solving the prob-
lems after your analysis

Descriptions of the image-compression and bit-packing problems follow, along
with code, explanations, and advice.

Problems
Part A: Lossy image compression
Your goal is to convert between full-color portable pixmap images and compressed
binary image files. Write a program rpeg which takes the option -c (for
compress) or -d (for decompress) and also the name of the file to compress or
decompress. The name of the file may be omitted, in which case you
should compress or decompress standard input. If you’re given something
else on the command line, print the following:

Usage: rpeg -d [filename]
rpeg -c [filename]

A compressed image should be about three times smaller than the same image in
PPM format. If not, you are doing something wrong.

We have designed a compressed-image format and a compression algorithm.
The algorithm, which is inspired by JPEG, works on 2-by-2 blocks of pixels.
Details will appear later in this assignment handout, but here is a sketch of the
compression algorithm:

1. Read a PPM image from a file specified on the command line or from
standard input.

2. If necessary, trim the last row, column, or both row and column of the
image so that the width and height of your image are even numbers.

3. Change to a floating-point representation (think about the ppm format
and its denominator)

4. transform each pixel from RGB color space into component video color
space (Y /PB/PR)

5. Pack each 2-by-2 block into a 32-bit word as follows:
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• For the PB and PR (chroma) elements of the pixels, take the average
value of the four pixels in the block. We’ll call these average values
PB and PR.

• Convert the PB and PR elements to four-bit values using the function
we provide you:
csc411_arith::index_of_chroma(x: f32) -> usize

• This function takes a chroma value between −0.5 and +0.5 and returns a
4-bit quantized representation of the chroma value.

• Using a discrete cosine transform (DCT), transform the four Y (lumi-
nance/luma) values of the pixels into cosine coeffecients a, b, c, and d.

• Convert the b, c, and~d to five-bit signed values assuming that they lie
between −0.3 and 0.3. Although these values can actually range from −0.5
to +0.5, a value outside the range ±0.3 is quite rare. I’m willing to throw
away information in the rare cases in order to get more precision for the
common cases.
– Pack a, b, c, d, PB , and PR into a 32-bit word as follows:

Value Type Width LSB
a Unsigned scaled integer 9 bits 23
b Signed scaled integer 5 bits 18
c Signed scaled integer 5 bits 13
d Signed scaled integer 5 bits 8

index(PB) Unsigned index 4 bits 4
index(PR) Unsigned index 4 bits 0

The index operation is implemented by csc411_arith::index_of_chroma;
it quantizes the chroma value and returns the index of the quantized value
in an internal table. To pack the codeword, you will use the bitpack crate
you will develop in Part B.

• Write a compressed binary image to standard output. The header of the
compressed binary image should be written by

println!("Compressed image format 2\n{} {}", width, height);

• This header should be followed by a sequence of 32-bit code words, one for
each 2-by-2 block of pixels. The width and height variables describe the
dimensions of the original (decompressed) image, after trimming off any
odd column or row.
– Each 32-bit code word should be written to disk in big-endian order,

i.e., with the most significant byte first.
• The Rust standard library functions from_be_bytes and to_be_bytes

will be useful here:
• https://doc.rust-lang.org/std/primitive.u32.html#method.from_be_bytes

You can write a single byte using print!().
– Code words should be written in row-major order, i.e., first the code
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word for the 2-by-2 block containing pixel (0, 0), then the block
containing pixel (2, 0), and so on.

Your decompressor will be the inverse of your compressor:

• Read the header of the compressed file to determine the width and height.
• Sadly, Rust lacks an equivalent to C’s fscanf, but you may use the

scan_fmt crate. The trick is to use exactly the same string as is printed
in the header, as in this trivial example:

#[macro_use] use scan_fmt;

fn main() {
let (w, h) = scan_fmt!("Compressed image format 2\n{} {}\n", u32, u32);
println!("{} {}", w.unwrap(), h.unwrap());

}

You will also need to include it in your dependencies in Cargo.toml:

[dependencies]
scan_fmt = "ˆ0"

• Allocate a 2D array of pixels of the given width and height.
• Use the new csc411_image::write() function to write out an image to

stdout.

Changes to your array2 crate
• You’re going to need to be able to deal with a mutable array2 of Rgb

pixels.

• You probably want a get_mut() method on your array2. You might
alternatively want an iter_row_major_mut() method. It’s up to you.

– How? All that really changes is the type signatures. You tell the
compiler the value returned should be mutable.

– The resulting machine code is the same!

• We recommend using 255 as the denominator.

• Read the 32-bit code words in sequence, remembering that each word is
stored in big-endian order, with the most significant byte first.

• For each code word, unpack the values a, b, c, d, and the coded PB and
PR into local variables.

• Convert the four-bit chroma codes to PB and PR using the function we
provide you:

csc411_arith::chroma_of_index(n: usize) -> f32;

8



• Use the inverse of the discrete cosine transform to compute Y1, Y2, Y3, and
Y4 from a, b, c, and d.

• For each pixel in the current 2-by-2 block, you will now have a component-
video representation of the color of that pixel, in the form (Yi, PB , PR).
Transform the pixel from component-video color to RGB color, quantize
the RGB values to integers in the range 0 to 255, and create a row-major
array of pixels. (Because repeated quantization can introduce significant
errors into your computations, getting the RGB values into the right range
is not as easy as it looks.)

• Once you have put all the pixels into your pixmap, you can write the uncom-
pressed image to standard output by calling csc411_image::write(None)

Conversion between RGB and component video

The CIE XYZ color space was created by the International Committee on
Illumination in 1931. The committee is usually referred to as the CIE, which as
an acronym for the French Commission Internationale de l’'Eclairage. It is the
international authority on standards for representation of light and color.

The XYZ system uses three so-called tristimulus values which are matched to
the visual response of the three kinds of cone cells found in the human retina.
By contrast, the RGB system is matched to the red, green, and blue phosphors
found on cathode-ray tube (CRT) computer screens. Despite the fact CRTs
have largely been replaced by liquid-crystal displays, which have different color-
response characteristics, computing standards remain wedded to the RGB format
originally created for CRTs.

The Y value represents the brightness of a color; the X and Z values represent
“chromaticity.” Early black-and-white television transmitted only Y, or brightness.
When color was added, analog engineers needed to make the color signal backward
compatible with black-and-white TV sets. They came up with a brilliant hack:
first, they made room for a little extra signal by reducing the refresh rate (number
of frames per second) from 60Hz to 59.97Hz, and then they transmitted not
the chromaticity, but the differences between the blue and red signals and the
brightness. The black-and-white sets could ignore the color-difference signals,
and everybody could watch TV.

The transformation is useful for compression because the human eye is more
sensitive to brightness than to chromaticity, so we can use fewer bits to represent
chromaticity.

There are multiple standards for both RGB and luminance/chromaticity repre-
sentations. We will use component-video representation for gamma-corrected
signals; this signal is a luminance Y together with two side channels PB and PR

which transmit color-difference signals. PB is proportional to B − Y and PR is
proportional to R− Y . In each case, the constant of proportionality is chosen
so that both PB and PR range from −0.5 to +0.5. The luminance Y is a real
number between 0 and 1.
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Given the RGB representation used by the portable pixmap (PPM) library, we
can convert to component video by the following linear transformation: Y

PB

PR

 =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

 R
G
B

 .

If your matrix arithmetic is rusty, the equation above is equivalent to

y = 0.299 * r + 0.587 * g + 0.114 * b;
pb = -0.168736 * r - 0.331264 * g + 0.5 * b;
pr = 0.5 * r - 0.418688 * g - 0.081312 * b;

The inverse computation, to convert from component video back to RGB, is

r = 1.0 * y + 0.0 * pb + 1.402 * pr;
g = 1.0 * y - 0.344136 * pb - 0.714136 * pr;
b = 1.0 * y + 1.772 * pb + 0.0 * pr;

The discrete cosine transform

Suppose we have a 2-by-2 block of pixels with brightnesses Y1 through Y4. From
the point of view of linear algebra, these Yi values form a vector, but to exploit
our geometric intuition about 2-by-2 blocks, we write them as a matrix:

(
Y1 Y2
Y3 Y4

)
.

It is easy to see that we can compute this matrix as the sum of four standard
matrices, each of which is multiplied by the brightness of a single pixel:

(
Y1 Y2
Y3 Y4

)
= Y1 ·

(
1 0
0 0

)
+Y2 ·

(
0 1
0 0

)
+Y3 ·

(
0 0
1 0

)
+Y4 ·

(
0 0
0 1

)
.

This representation does not take advantage of the way the human eye works;
the eye is better at seeing gradual shadings of color than at seeing fine spatial
detail. We can therefore write the same pixels using a different orthogonal basis:1

The basis comes from taking cosines at discrete points; in fact, the four new
matrices we use come from computing cos 0, cosπy, cosπx, and (cosπx)(cosπy).
The values used for x and y are the coordinates of the four pixels, so x and y
take on only the integer values 0 and 1, and the equation is

(
Y1 Y2
Y3 Y4

)
= a·

(
1 1
1 1

)
+b·
(
−1 −1

1 1

)
+c·
(
−1 1
−1 1

)
+d·

(
1 −1
−1 1

)
.

1The words “orthogonal basis” will mean something to you only if you have studied linear
algebra.
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This is the famous discrete cosine transform (DCT), so called because we compute
cosines at discrete points.

When we consider the four-pixel array as an image, not just numbers, we can
see that the new basis derived from cosine functions actually tells us something
interesting about the image:

• The coefficient a is the average brightness of the image.
• The coefficient b represents the degree to which the image gets brighter as

we move from top to bottom.
• The coefficient c represents the degree to which the image gets brighter as

we move from left to right.
• The coefficent d represents the degree to which the pixels on one diagonal

are brighter than the pixels on the other diagnoal.

The usual trick in image compression is to throw away coefficients with high
spatial frequencies. With a 2-by-2 block this is a bit hard. The a coefficient
has a spatial frequency of 0, whereas b, c, and d all have frequencies of 1. If we
keep only a (which is what we’re doing to the chroma), then we’re really just
averaging four pixels together, blurring the image. If we keep all four, we don’t
save any information; we might as well keep the original Y1 through Y4.

There are two clear ways forward:

• In real images, a has a wide range, but b, c, and d are all quite small. The
right thing to do would be to use 9 bits to represent a and to pack b, c,
and d into 5 bits apiece, using a nonlinear quantization function. But
we’re already doing nonlinear quantization with the chroma (see below),
and I don’t want you to have to do a lot of tedious re-implementation of
the same idea.

• We’ll go ahead and code a as an unsigned, 9-bit scaled integer, and for b,
c, and d, we’ll use a very simple nonlinear coding:
– When |b|, |c|, and |d| are small, which is to say at most 0.3, we’ll code

them as signed, 5-bit scaled integers.
– When |b|, |c|, or |d| is not small, which is to say more than 0.3, we’ll

code it as if it were +0.3 or −0.3, whichever is closer. When b, c,
and~d have large magnitudes, this scheme leads to major coding
errors, but in photographic images, such coefficients are rare.

Here are the equations giving the transformation to and from cosine space.
To transform from cosine space into pixels, we just read off the sum from the
previous page; to get from cosine space back to pixel space, we perform the
inverse transformation:

Y1 = a− b− c+ d
Y2 = a− b+ c− d
Y3 = a+ b− c− d
Y4 = a+ b+ c+ d

a = (Y4 + Y3 + Y2 + Y1)/4.0
b = (Y4 + Y3 − Y2 − Y1)/4.0
c = (Y4 − Y3 + Y2 − Y1)/4.0
d = (Y4 − Y3 − Y2 + Y1)/4.0
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Since Yi is always in the range 0 to 1, we can see that a is also in the range 0
to 1, but b, c, and d lie in the range − 1

2 to 1
2 . Thus, you can code a in nine

unsigned bits if you multiply by 511 and round.

For coding b, c, and d, your objective is to code the floating-point interval
[−0.3,+0.3] into the signed-integer set {−15,−14, . . . ,−1, 0, 1, 2, . . . , 15}. As
noted above, any coefficient outside that interval should be coded as +15 or −15,
depending on sign. There is more than one good way to do the calculation.

Quantization of chroma

The process of converting from an arbitrary floating-point number to one of a
small set of integers is known as quantization. In reducing average chroma to
just 4 bits, we quantize in the extreme. The quantization works by considering
the floating-point chroma value and finding the closest value in the set

{±0.35,±0.20,±0.15,±0.10,±0.077,±0.055,±0.033,±0.011}.

As seen below, most chroma values are small, so we chose this set to be more
densely populated in the range ±0.10 than near the extrema of ±0.50. By putting
more information near zero, where most values are, this nonlinear quantization
usually gives smaller quantization errors2 than the linear quantization n =
floor(15 ∗ (PB + 0.5)). But for those rare images that use saturated colors,
when PB or PR is large, quantization errors will be larger than with a linear
quantization. The net result is that when colors are more saturated, compression
artifacts will be more visible. You probably won’t notice artifacts if you compress
an ordinary photograph, especially if it has already been compressed with JPEG.
But if you try compressing and then decompressing a color-bar test pattern, you
should notice artifacts.

Quantization is implemented by sorting the values above into a 16-element array.
To quantize a floating-point chroma value, we find the element of the array that
most closely approximates the chroma, and I return that element’s index.

Why it works

Here you can see a picture and three histograms, which tell how often each value
of Y , PB, and PR occurs in the picture. The hump in Y values around 0.3 to
0.5 shows that the picture is somewhat dark; the big spike near 1.0 is the bright
overcast sky in the background. The tremendous range in the available Y values
shows that Y carries lots of information, so we are justified in using lots of bits
(24 out of 32) to code it. As is typical, the chroma signals are mostly near zero;
the blue chroma PB is somewhat negative because of the lack of blue tones in
the photograph; the red chroma PR is somewhat positive, probably because of
the red bricks. The narrow range of the actual chroma values shows that color

2The quantization error is the difference between PB and
chroma_of_index(index_of_chroma(PB).
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differences carry little information, so we are justified in using only 8 of 32 bits
for color.

(Why Tufts? I previously taught this course at Tufts, and had this nice photo
and set of histograms handy).

Here’s a diagram that shows the results of the discrete cosine transform on Y :

13



You see why it could be useful to quantize b, c, and d in a narrow range around
0.

Part B: Packing and unpacking integers
When programming at the machine level, it is common to pack multiple small
values (sometimes called “fields”) into a single byte or word. The binary repre-
sentation of machine instructions uses such packings heavily, and the instruction-
decode unit unpacks a sequence of bytes into fields that determine opcodes and
operands. You will implement functions to perform these kinds of computations.
It will take you longer to understand the specification than to write the code.

The best way to describe a field is to give its width and the location of the least
significant bit within the larger byte or word. For example, if a machine has a
2-way set-associative 128KB Level-1 cache with 64-byte cache lines, then 6 bits
are required to address a byte within a line, and the line offset is a field 6 bits
wide with its least significant bit at bit 0. There are 128K ÷ 64 = 1024 = 210

sets, so the set number is a field 10 bits wide with its least significant bit at bit
6. Because bits 48–63 are canonical, the caching tag is 32 bits wide with its least
significant bit at bit 16. All these fields are interpreted as unsigned integers.
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When packing fields, you also have to deal with the question of whether an
integer fits into a given number of bits. For example, the integer 17 cannot be
represented in a 3-bit field3.

In this part of the assignment you will define bit-manipulation primitives as part
of the bitpack crate:

use std::convert::TryInto;

/// Returns true iff the signed value `n` fits into `width` signed bits.
///
/// # Arguments:
/// * `n`: A signed integer value
/// * `width`: the width of a bit field
pub fn fitss(n: i64, width: u64) -> bool {
}

/// Returns true iff the unsigned value `n` fits into `width` unsigned bits.
///
/// # Arguments:
/// * `n`: An usigned integer value
/// * `width`: the width of a bit field
pub fn fitsu(n: u64, width: u64) -> bool {
}

/// Retrieve a signed value from `word`, represented by `width` bits
/// beginning at least-significant bit `lsb`.
///
/// # Arguments:
/// * `word`: An unsigned word
/// * `width`: the width of a bit field
/// * `lsb`: the least-significant bit of the bit field
pub fn gets(word: u64, width: u64, lsb: u64) -> i64 {
}

/// Retrieve an unsigned value from `word`, represented by `width` bits
/// beginning at least-significant bit `lsb`.
///
/// # Arguments:
/// * `word`: An unsigned word

3A 3-bit field can be interpreted as signed or unsigned. When signed, it can represent
integers in the range −4 to 3; when unsigned, it can represent integers in the range 0 to 7.
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/// * `width`: the width of a bit field
/// * `lsb`: the least-significant bit of the bit field
pub fn getu(word: u64, width: u64, lsb: u64) -> u64 {
}

/// Return a modified version of the unsigned `word`,
/// which has been updated so that the `width` bits beginning at
/// least-significant bit `lsb` now contain the unsigned `value`.
/// Returns an `Option` which will be None iff the value does not fit
/// in `width` unsigned bits.
///
/// # Arguments:
/// * `word`: An unsigned word
/// * `width`: the width of a bit field
/// * `lsb`: the least-significant bit of the bit field
/// * `value`: the unsigned value to place into that bit field
pub fn newu(word: u64, width: u64, lsb: u64, value: u64) -> Option<u64> {
}

/// Return a modified version of the unsigned `word`,
/// which has been updated so that the `width` bits beginning at
/// least-significant bit `lsb` now contain the signed `value`.
/// Returns an `Option` which will be None iff the value does not fit
/// in `width` signed bits.
///
/// # Arguments:
/// * `word`: An unsigned word
/// * `width`: the width of a bit field
/// * `lsb`: the least-significant bit of the bit field
/// * `value`: the signed value to place into that bit field
pub fn news(word: u64, width: u64, lsb: u64, value: i64) -> Option<u64> {
}

You are to implement this interface in the file bitpack.rs.

Width-test functions

Your interface must be able to test to see if an integer can be represented in k
bits. The answer will depend on whether the k bits are interpreted as unsigned
integers or as signed integers in the two’s-complement representation. We will
refer to these representations using the shorthand “k unsigned bits” and “k
signed bits.”

Define these functions:

pub fn fitss(n: i64, width: u64) -> bool;
pub fn fitsu(n: u64, width: u64) -> bool;
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The functions tell whether the argument n can be represented in width bits.
For example, 3 bits can represent unsigned integers in the range 0 to 7, so
bitpack::fitsu(5, 3) == true. But 3 bits can represent signed integers only
in the range −4 to 3, so bitpack::fitss(5, 3) == false.

Field-extraction functions

The next functions you are to define extract values from a word. Values ex-
tracted may be signed or unsigned, but by programming convention we use only
unsigned types to represent words.

pub fn gets(word: u64, width: u64, lsb: u64) -> i64;
pub fn getu(word: u64, width: u64, lsb: u64) -> u64;

Each function extracts a field from a word given the width of the field and the
location of the field’s least significant bit. For example:

bitpack::getu(0x3f4, 6, 2) == 61
bitpack::gets(0x3f4, 6, 2) == -3

To get the cache set number from a 64-bit address, you might use
bitpack::getu(address, 10, 6). It should be a checked run-time
error to call bitpack::getu or bitpack::gets with a width w that does not
satisfy 0 ≤ w ≤ 64. Similarly, it should be a checked run-time error to call
bitpack::getu or bitpack::gets with a width w and lsb that do not satisfy
w + lsb ≤ 64.

Some machine designs, such as the late, unlamented HP PA-RISC, provided
these operations using one machine instruction apiece. The Intel/AMD X64
architecture does not.

Field-update functions

If we’re going to split a word into fields, we obviously want to be able to change
a field as well as get one. In my design, I do not want to mess around with
pointers, so “replacing” a field within a word does not mutate the original word
but instead returns a new one:

pub fn newu(word: u64, width: u64, lsb: u64, value: u64) -> Option<u64>;
pub fn news(word: u64, width: u64, lsb: u64, value: i64) -> Option<u64>;

Each of these functions should return a new word which is identical to the
original word, except that the field of width width with least significant bit at
lsb will have been replaced by a width-bit representation of value.

It should be a checked run-time error to call bitpack::newu or
bitpack::news with a width w that does not satisfy 0 ≤ w ≤ 64. Sim-
ilarly, it should be a checked run-time error to call bitpack::newu or
bitpack::news with a width w and lsb that do not satisfy w + lsb ≤ 64.
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Further error handling If bitpack::news is given a value that does not
fit in width signed bits, it must return None

Similarly, if bitpack::newu is given a value that does not fit in width unsigned
bits, it must also return None.

If no checked run-time error occurs, then bitpack::getu and bitpack::newu
satisfy the mathematical laws you would expect, for example,

bitpack::getu(bitpack::newu(word, w, lsb, val).unwrap(), w, lsb) == val

A more subtle law is that if lsb2 >= w + lsb, then

getu(newu(word, w, lsb, val), w2, lsb2) == getu(word, w2, lsb2)

where in order to fit the law on one line, I’ve left off bitpack:: in the names
of the functions. Similar laws apply to the signed get and new functions. Such
laws make an excellent basis for unit testing4. You can also unit-test the fits
functions to ensure that the new functions correctly raise an exception on being
presented with a value that is too large.

I’m aware of three design alternatives for the bitpack module:

• Implement the signed functions using the unsigned functions
• Implement the unsigned functions using the signed functions
• Implement the signed functions and the unsigned functions independently,

in such a way that neither is aware of the other

Any of these alternatives is acceptable.

Documentation
• For this assignment, you are expected to write interface documen-

tation that is compatible with cargo doc.
• We want to see, for public functions, documentation of the functions’

contracts. Specifically, what arguments are expected, what is returned,
and how they relate. We don’t need to see the types; Rust already provides
that. We want the semantics. Please also mention any failure modes or
errors (e.g. if a function returns an Option type, under what circumstances
does that Option evaluate to None?) as well as anything else the user of
your code would need to know.

• There is documentation for how to write documentation here:
https://doc.rust-lang.org/cargo/commands/cargo-doc.html

• But if you use the above example of bitpack as a model, you should do
fine.

4“Unit testing” means testing a solution to a subproblem before testing the solution to the
whole problem.
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Supplementary material
Traps and pitfalls
The warnings always come after the spell

Computations involving arithmetic are the most difficult to get right; a trivial
typo can lead to a program that silently produces wrong answers, and finding it
can be nearly impossible. The only helpful strategy is aggressive unit testing.

• A hellish property of C, copied by Rust, is that left and right shift are
undefined when shifting by the word size. Worse, the Intel hardware does
something very inconvenient: if you shift a word left or right by 64~bits,
nothing happens. We recommend that you define functions to do your
shifting (you may want to use the #[inline] directive; this hints to the
compiler that the functions should be inlined during optimization, so
there is no calling cost). Your functions, unlike the hardware, should do
something sensible when asked to shift by 64. (We expect you to figure
out what might be sensible.)

• In Rust, you can create a literal value of a specific size with something like
0_u64, -1_i32, and so on.

• You may be tempted to implement parts of the bitpack crate by using a
loop that does one iteration per bit. Don’t! The bitpack operations need
to be implementable in one or two dozen instructions apiece. This is true
not only to meet performance goals for code that we will rely on heavily,
but to meet learning goals that you understand how to compute with shift,
bitwise complement, and the other Boolean operations on bit vectors.

• You may be tempted to try to using the floating-point unit to compute
powers of two. Don’t! The problem is that at any given word size, a
floating-point number reserves not only 1 bit for the sign bit, but a cluster
of bits for an exponent. This means that a floating-point number always
offers less precision than an integer of the same number of bits.
In particular, an IEEE double (f64 in Rust) contains only 64 bits of
precision, and because some bits are used for sign and exponent, an
f64 cannot represent all 64-bit integers. An f32 (float in C), whose
representation is only 32 bits, is even worse. Once n is large enough, doing
arithmetic with pow(2, n) will lead to serious error.

• Quantization error can drive values out of range. For example, when
converted to floating-point component video, compressed, quantized, de-
compressed to floating-point component video, and finally converted back
to floating-point color, colors may go negative. We know of three ways to
solve this problem:
– A gifted arithmetist might find a way to do all the computations in

rational numbers using only integer arithmetic, and might then find
exactly the places in the code where quantization error can violate
an invariant. In those places, values could be checked and adjusted.
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– An engineer in a hurry might just do the floating-point arithmetic
and then use an inline function to force each value into the interval
where it belongs.

– An ambitious engineer writing a codec for a blu-ray player would
probably take advantage of special machine instructions that do
saturating arithmetic. Such machine instructions do standard addition
and multiplication but then adjust the results if they would go outside
the bounds of the representation. (When ordinary integer arithmetic
overflows, the result “wraps around.” You’re doing arithmetic on
integers modulo 264 (64 is the word size).

We expect you to behave like an engineer in a hurry.

Detailed advice for bitpack

Here are some ideas to keep in mind when you approach the bitpack crate:

• The hardware provides three simple, powerful shift operations. But the
C and Rust programming languages, which are usually so good at letting
you get your hands on the hardware, tends to get in your way here:

– It’s too easy to confuse the two different right shifts.
– It’s too easy to get a shift that operates on only 32-bit values when

you really want to operate on all 64 bits of a word. For example, the
expression 2 << 60 does not do what you would hope (its value is
not 260). I suggest working around the these problems by defining
three inline functions, each of which gives you one hardware shift
instruction. This way you can have a single point of truth where you
answer the question

What Rust code do I have to utter to get the hardware effect
that I want?

You can use this same point of truth to define a shift operation that
is better than the hardware–one that does something sensible when
asked to shift left or right by a full 64 bits.

• Once you can easily command the shift you want in the place you want it,
the other part of the problem is figuring out which shifts to ask for. Here
the best approach is to draw pictures. What does the word look like when
you start? What do you want it look like when you finish? If you need
intermediate words, what do they look like?

A good way to draw pictures is to write abcde and so on for fields that you care
about, and xxxxxx or yyyyyy for fields that you don’t care about. Left and right
shifts can move or eliminate fields, and if you have different words that contain
fields in different positions, with zeroes elsewhere, you can compose them into a
single word using bitwise or (|).
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Other helpful advice
In addition to avoiding the traps and pitfalls and defining your own shift opera-
tions, you might benefit from the following advice:

• Implement bitpack last.
• The bit-packing functions obey a ton of algebraic laws. Discover them;

code them; check them.
• Conversion from RGB to component video and back should be inverse

functions; check both directions. Likewise for the cosine transform.
• Encoding and decoding a, b, c, and d into the codeword should be near-

inverses, provided that b, c, and d have magnitude no larger than 0.3. Larger
values of b, c, and d must be forced to +0.3 or −0.3 before encoding!

• When checking inverse properties, you will discover that the inexactitude of
floating-point arithmetic means that your code only approximately satisfies
the inverse laws. One way to deal with this is to say that x approximately
equals y when

(x− y)2

x2 + y2

is small. However, this test can fail as well if x and y are both zero. In
that case they are definitely approximately equal, but you have to check
for it.
– Dealing with this sort of situation is common in scientific computing

Testing
Plan to spend most of your time on this assignment creating and running unit
tests. Once your unit tests all run, doing whole pictures should be pretty
easy—the most likely mistakes are things like confusing width and height, and
these can be observed pretty easily.

We will run unit tests against your code. A significant fraction of your grade for
functionality will be based on the results of those unit tests.

A useful main function
We provide a main.rs which provides a main() which handles command-line
arguments; it is reproduced verbatim above. You should start with it when you
have sorted out your design.

Common mistakes
The mistakes people typically make on this assigment are covered above. To
enumerate all the common mistakes would be to repeat much of the handout.
Here are a half dozen carefully chosen ones:

• Testing bitpack without using all 64 bits
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• Having different modules know the same secret
• Having one module know wildly unrelated secrets
• Forgetting what you know (or can look up) about the PPM specification
• Writing a codeword in some format other than big-endian binary format
• Getting the compressed image format right in concept but not right in

practice
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