
CSC 411 Assignment: A Universal Virtual
Machine

Design due Friday, November 17th at 11:59 PM. Implementation due Friday,
December 1st at 11:59 PM.

Purpose and overview
The purpose of this assignment is to understand virtual-machine code (and by
extension machine code) by writing a software implementation, in Rust, of a
simple virtual machine, which we will call rum.

Specification of the Universal Machine
Machine State
The UM has these components:

• Eight general-purpose registers holding one word each
• A very large address space that is divided into an ever-changing collection

of memory segments. Each segment contains a sequence of words, and
each is referred to by a distinct 32-bit identifier. The memory is segmented
and word-oriented; you cannot load a byte

• An I/O device capable of displaying ASCII characters and performing
input and output of unsigned 8-bit characters

• A 32-bit program counter

One distinguished segment is referred to by the 32-bit identifier 0 and stores the
program. This segment is called the ‘0’ segment.

Notation
To describe the locations on the machine, we use the following notation:

• Registers are designated $r[0] through $r[7]
• The segment identified by the 32-bit number i is designated $m[i]. The

‘0’ segment is designated $m[0].

1

• A word at offset n within segment i is designated $m[i][n] You might
refer to i as the segment number and n as the address within the segment.

Initial state
The UM is initialized by providing it with a program, which is a sequence of
32-bit words. Initially:

• The ‘0’ segment $m[0] contains the words of the program.
• A segment may be mapped or unmapped. Initially, $m[0] is mapped and

all other segments are unmapped.
• All registers are zero.
• The program counter points to $m[0][0], i.e., the first word in the ‘0’

segment.

Execution cycle
At each time step, an instruction is retrieved from the word in the 0 segment
whose address is the program counter. The program counter is advanced to the
next word, if any, and the instruction is then executed.

Instructions’ coding and semantics
The Universal Machine recognizes 14 instructions. The instruction is coded by
the four most significant bits of the instruction word. These bits are called the
opcode.

Opcode Operator Action
0 Conditional

Move
if $r[C] 6= 0 then $r[A] := $r[B]

1 Segmented Load $r[A] := $m[$r[B]][$r[C]]
2 Segmented Store $m[$r[A]][$r[B]] := $r[C]
3 Addition $r[A] := ($r[B] + $r[C]) mod 232

4 Multiplication $r[A] := ($r[B] × $r[C]) mod 232

5 Division $r[A] := ($r[B] ÷ $r[C]) (integer division)
6 Bitwise NAND $r[A] :=¬($r[B]∧$r[C])
7 Halt Computation stops
8 Map segment A new segment is created with a number of words

equal to the value in $r[C]. Each word in the
new segment is initialized to zero. A bit pattern
that is not all zeroes and does not identify any
currently mapped segment is placed in $r[B].
The new segment is mapped as $m[$r[B]].

9 Unmap segment The segment $m[$r[C]] is unmapped.
Future Map Segment instructions may reuse the
identifier $r[C].

2

Opcode Operator Action
10 Output The value in $r[C] is displayed on the I/O

device immediately. Only values from 0 to 255
are allowed.

11 Input The UM waits for input on the I/O device. When
input arrives, $r[c] is loaded with the input,
which must be a value from 0 to 255. If the end
of input has been signaled, then $r[C] is loaded
with a full 32-bit word in which every bit is 1.

12 Load Program Segment $m[$r[B]] is duplicated, and the
duplicate replaces $m[0], which is abandoned.
The program counter is set to point to
$m[0][$r[C]]. If $r[B]=0, the load program
operation should be extremely quick, as this is
effectively a jump.

13 Load Value See semantics for “other instruction”.

Three-register instructions

Most instructions operate on three registers. The registers are identified by
number; we’ll call the numbers A, B, and C. Each number coded as a three-bit
unsigned integer embedded in the instruction word. The register C is coded by
the three least significant bits, the register B by the three next more significant
than those, and the register A by the three next more significant than those:

A C
| |
vvv vvv

.--------------------------------.
|VUTSRQPONMLKJIHGFEDCBA9876543210|
`--------------------------------'
^^^^ ^^^
| |
opcode B

One other instruction

One special intruction, with opcode 13, does not describe registers in the same
way as the others. Instead, the three bits immediately less significant than
opcode describe a single register A. The remaining 25 bits indicate a value,
which is loaded into $r[A].

A
|
vvv

.--------------------------------.

3

|VUTSRQPONMLKJIHGFEDCBA9876543210|
`--------------------------------'
^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^
| |
| value
|
opcode == 13

Failure modes
The behavior of the Universal Machine is not fully defined; under circumstances
detailed below (and only these circumstances), the machine may fail.

• If at the beginning of a machine cycle the program counter points outside
the bounds of $m[0], the machine may fail.

• If at the beginning of a cycle, the word pointed to by the program counter
does not code for a valid instruction, the machine may fail.

• If a segmented load or segmented store refers to an unmapped segment,
the machine may fail.

• If a segmented load or segmented store refers to a location outside the
bounds of a mapped segment, the machine may fail.

• If an instruction unmaps $m[0], or if it unmaps a segment that is not
mapped, the machine may fail.

• If an instruction divides by zero, the machine may fail.
• If an instruction loads a program from a segment that is not mapped, then

the machine may fail.
• If an instruction outputs a value larger than 255, the machine may fail.

In the interests of performance, failure may be treated as an unchecked run-time
error. Even a core dump is OK, though a segfault is not.

Resource exhaustion
If a UM program demands resources that your implementation is not able to
provide, and if the demand does not constitute failure as defined above, your
only recourse is to halt execution with a checked run-time error.

Advice on the implementation
This problem presents two challenges:

• Emulating a 32-bit machine on 64-bit hardware
• Choosing abstractions that are efficient enough

There are also some pitfalls:

• It’s easy to forget to test the input instruction, or to test it inadequately.

4

• It’s easy to let the amount of memory allocated grow without bound. If
you fall into this pit, you won’t be able to run any nontrivial UM programs.

• It’s easy to allocate more memory than is really needed to solve the problem.
If you fall into this pit, you’ll find that nontrivial UM programs run very,
very slowly.

And finally there are some useful things to know:

• In the Rust programming language running on modern hardware, addition
and multiplication of values of type uk keeps only the least significant k
bits of each result. Mathematically, the least significant k bits of a value is
equivalent to that value modulo 2k.

• Just as in C, in the Rust programming language running on AMD64
hardware, division of signed and unsigned integer types rounds toward
zero. (For signed types, rounding toward zero is a crime.
Rounding toward minus infinity would be much more useful. Alas, we are
stuck with this legacy feature.)

Emulating a 32-bit machine: Simulating 32-bit segment
identifiers
On a 32-bit machine, you could simply use a 32-bit pointer as a segment identifier
and have malloc do your heavy lifting. On the 64-bit machine, you will need an
abstraction that maps 32-bit segment identifiers to actual sequences of words in
memory. (Any representation of segments I can think of requires at least 64 bits
to store.)

Plan to reuse 32-bit identifiers that have been unmapped. One way is to store
them in some collection such as a Vec<T>.

Efficient abstractions
Your choice of abstractions can easily affect performance of your UM by a factor
of 1000. We will provide a benchmark that a well-optimized UM should be able
to complete in about 1 second; a UM designed without regard to performance
might take 20 minutes on the same benchmark. To get decent performance,
focus on two decisions:

• Think about what parts of the machine state are most frequently used,
and to the degree you can, be sure that frequently used state is in local
variables that the compiler can put in registers. (You can verify placement
in registers by using objdump.)

For this assignment, you should trust the Rust compiler to get you reasonable
performance; you’ll have the opportunity to speed up your UM in the next
assignment.

5

Avoid common mistakes
Following this advice will help you avoid common mistakes:

• The Input instruction is supposed to read any C char as an integer in the
range 0 to 255. In Rust, this is any u8 value. Standard printable ASCII
characters live in the range 33 to 126. You’ll want to test on a larger range
of inputs. One source of inputs is the special file /dev/urandom. Used
together with the dd and cmp commands, it should provide an easy way to
test more characters.

• If the um binary is called from the command line in a way that violates
its contract, it should print a suitable message to standard error, and it
should exit nonzero.

What we expect of you
Your design and its documentation
The documentation of your design should include

• the representation of segments and its invariants.
• the architecture and test plan.

For this assignment in particular, we have high expectations for your test plan.

In this assignment we are raising the bar for your design work:

• Excellent design documentation will say what data structure will be used
to represent each part of the state of a Universal Machine, and where that
data structure will be stored.

• Excellent design documentation will show how the parts will be organized,
and in particular, how the implementation of the Universal Machine will
be decoupled from the program loader and the main() function, so that
the Universal Machine can be unit tested.

Implementation
We expect you to write a complete and correct implementation of the Universal
Machine. Moreover, we expect it to be efficient enough to execute a UM
benchmark of 50 million instructions in less than 100 CPU seconds on the
homework server; that’s half a million instructions per second.

The UM is a virtual machine. One of the purposes of virtualization is to insulate
the real (“host”) hardware from bad behavior by client (“guest”) software.
For example, in the Amazon Elastic Compute Cloud, no matter how badly the
client binaries behave, Amazon makes sure that when a virtual server halts, all
machine resources are recovered. (Any other strategy would leave Amazon with
machine resources that aren’t earning any revenue.) Similarly, no matter how

6

badly a UM client behaves, your implementation must ensure that, when the
UM finishes running, all available machine resources are recovered.

For testing, you will find it useful to implement the UM as a library. However,
we will be evaluating a command-line version which is a command-line program
that expects exactly one argument: the name of a file containing a UM program.
When a UM program is stored in a file, words are stored using big-endian byte
order.

The UM “I/O device” should be implemented using standard input and standard
output.

What to submit
Design

On Gradescope, please submit a PDF file describing your design.

Implementation

On Gradescope, please submit:

• Your rum project. By now, you should know how to zip it up to exclude
.git and target and Cargo.lock

• A README file which
– Identifies you and your programming partner by name
– Acknowledges help you may have received from or collaborative work

you may have undertaken with others
– Identifies what has been correctly implemented and what has not
– Briefly enumerates any significant departures from your design
– Succinctly describes the architecture of your system. Identify the

modules used, what abstractions they implement, what secrets they
know, and how they relate to one another. Avoid narrative descriptions
of the behavior of particular modules.

– Explains how long it takes your UM to execute 50 million instructions,
and how you know

– Says approximately how many hours you have spent analyzing the
assignment

– Says approximately how many hours you have spent preparing your
design

– Says approximately how many hours you have spent solving the
problems after your analysis

On a 32-bit machine, most experienced programmers can understand the Univer-
sal Machine specification and build an implementation in a total of two hours. On
a 64-bit machine, the need to emulate 32-bit segmented memory (since you can’t
use 32-bit pointers as segment identifiers) will add an hour of work. We expect
you to take about two hours to analyze the assignment, four hours to prepare
your design and unit tests, and four hours to build a working implementation.

7

My implementation is a little less than 300 lines of Rust code; almost one-third
is devoted to conversions between 64-bit pointers and 32-bit Universal machine
identifiers. Reading arguments and loading the initial program takes about 35
lines, so the Universal Machine itself is just around 150 lines of code.

What we provide for you
We provide the following useful items:

• In /csc/411/um you will find a small collection of Universal Machine
binaries that you can use for final system test. The binaries are described
by a README file.

• They are also available at https://github.com/ndaniels/rum-binaries
• The rumdump you wrote in lab will dump the contents of a Universal

Machine binary, as in:

rumdump cat.um
rumdump midmark.um | less

Alternatively, the program /usr/local/bin/umdump will dump the contents of
a Universal Machine binary. It is the closest counterpart I have to objdump.

• There is a working bitpack on EdStem that you may use if your bitpack
from the Arith assignment doesn’t work. It only needs to work for unsigned
values, and if you use mine, you must mention so in the Readme.

8

	Purpose and overview
	Specification of the Universal Machine
	Machine State
	Notation
	Initial state
	Execution cycle
	Instructions’ coding and semantics
	Three-register instructions
	One other instruction

	Failure modes
	Resource exhaustion

	Advice on the implementation
	Emulating a 32-bit machine: Simulating 32-bit segment identifiers
	Efficient abstractions
	Avoid common mistakes

	What we expect of you
	Your design and its documentation
	Implementation
	What to submit
	Design
	Implementation

	What we provide for you

