
CSC 440 Assignment 1: Perfect Marriage in King
Arthur’s court, and Pandemic

Out: Thursday, January 26th

Due: Monday, February 6th, by 11:59PM

Introduction
The purpose of this pair assignment is threefold:

1. To shake off the cobwebs if your Python is a little rusty
2. To implement a graph algorithm based on pseudocode for the algorithm,

using appropriate choices of data structures given the access pat-
terns

3. To begin learning how invariants can help you reason about the correct-
ness of an algorithm.

Part 1: Perfect Marriage in King Arthur’s Court
King Arthur issues a decree: all the knights and ladies in Camelot must marry1.
As it happens, there are an equal number, so he insists this should be possible.
Arthur orders Merlin, the magician, to come up with an algorithm to match the
knights and ladies up so that no marriage is unstable. Merlin comes up with an
algorithm:

• Every knight ranks the ladies in order of preference.
• Similarly, every lady ranks the knights in order of preference.
• Each knight proposes to the lady he prefers most.
• Then, each lady either considers all the proposals she has received, and

replies “maybe” to the knight she likes best (of the ones that proposed to
her) and “no” to all the rest. Thus, she is now engaged to that knight.

• As long as there are unengaged knights, each unengaged knight proposes
to the most-preferred lady to whom he has not yet proposed, regardless of
whether or not she is engaged.

1Why no marriage equality? Well, this is a fictional story, and it turns out the Gale-Shapley
algorithm requires two different “classes”. If you prefer, you can refer to one class as medical
residencies and the other as medical doctors.

1



• Each lady reviews the new proposals, and either replies “maybe” if she is
not yet engaged or if she prefers this knight to the one she was previously
engaged to (if she rejects her previous knight, he becomes unengaged)

Merlin proves to King Arthur that as long as there are the same number of knights
and ladies, this algorithm will result in a perfect, stable marriage: everyone will
be married, and there will not exist some knight and some lady who would both
rather be with each other than with their current partner.

We discussed this algorithm, called Gale-Shapley, and proved that its asymptotic
complexity is O(n2), as well as that the algorithm provides a stable marriage. In
most future assignments, you will have to spend some time proving complexity
bounds, but for this one, you will not. Instead, you will:

• Implement Gale-Shapley in Python.
• Document the invariants in your code
• Benchmark your implementation on data sets of different sizes, which we

provide
• Plot the running time versus the input size, and explain whether or not

the results meet your expectations.

You will need to upload your code (python file) as well as the PDF containing
your Pandemic solution, and benchmarks and explanation of your program’s
running time (either separate or combined PDFs are fine).

Data File Format and Program Arguments
It is essential to understand that you are writing software whose output will be
consumed by other software (namely, the autograder). Thus, your output must
conform exactly to the specification given here, just as we promise the input files
we give you will conform exactly to the input specification we give.

Your program must be called marriage.py and must take a single command-
line argument, which specifies an input file.

Failure to adhere to these specifications will result in a zero grade for Functional
Correctness.

We provide a zip archive on EdStem, marriage_inputs.zip as well as
marriage_inputs_small.zip, containing input files on which you are to
benchmark your program as described below. The smaller inputs are fine for
testing correctness, but you’ll ultimately want to benchmark on everything in
the larger archive. We will, in addition, test your program on other inputs that
we do not provide you.

Input Specification

We provide an ASCII (8-bit) text file. The first line contains only a single
integer, which may be multiple digits. That is the value of n: it is the number

2



of men (which is also the number of women). Every subsequent line contains
n + 1 entries, separated by a space. For the first n lines after this first line, the
first entry on each line is the name of a knight, and the rest of the entries are
his order of preference for the ladies (we are only using a single name for each
person, rather than first and last names, and there must be no duplicates). For
the next n lines, the first entry on each line is the name of a lady, and the rest
of the entries are her order of preference for the knights. Names may contain
alphanumeric characters (they may look like real human names, or they may
not).

Example:

2
Galahad Guinevere Elaine
Lancelot Guinevere Elaine
Elaine Galahad Lancelot
Guinevere Lancelot Galahad

Output Specification

You provide output on STDOUT. It must contain n lines, one per marriage. Each
line has the knight’s name, then a space, then the lady’s name. We do not
specify the order of the knights; we will sort your input and the correct answer
in order to compare them.

Example:

Galahad Elaine
Lancelot Guinevere

If no input file is provided, or if the input format is not exactly as specified
above, your program must exit with result code 1, and should print nothing on
STDOUT. In python, this is achieved with

exit(1)

You must not return any other output on STDOUT. How, then, can you easily
benchmark your program? We suggest one of two ways:

• On Linux or Mac OS X, use the time command to run your code from the
command line.

• On any operating system, use the timeit module in Python. You can
wrap the main body of your program in a call to timeit.timeit and then
report the resulting time on STDERR.

If you do not understand what we mean by STDOUT and STDERR, please ask the
course staff.

3



Part 2: Pandemic!
You are in a class of 25 students. Naturally, the seats in this class are arranged
in a 5 x 5 grid.

Two students are neighbors if they are horizontally or vertically next to each
other. For example:

Figure 1: Day 1

A and B are neighbors. B and C are neighbors. A and C are NOT neighbors.

Some of your fellow students are infected by a mysterious virus (not SARS-
COV2). An infected student never becomes healthy. Each day the infection
spreads to a healthy student if that student has at least two infected neighbors.
For example, let’s start with the following configuration of infected (in red)
students:

• Day 1:

• Day 2:

4



• Day 3:

• Day 4:

• Day 5+: (the infection has stopped spreading)

5



For a second example, consider the following configuration of infected students:

• Day 1:

• Day 2:

• Day 3:

• Day 4:

• Day 5:

6



• Day 6+ (every student is infected):

Answer as many of the following questions as you can. Explain your answers
and the thoughts and processes that led you to those answers.

1. What is the maximum number of initially infected students such that,
regardless of how they are placed in the classroom, at least one initially
healthy student always remains healthy?

2. What is the minimum number of initially infected students such that there
is some arrangement of that many initially infected students that will result
in every student eventually becoming infected?

3. Can you arrange this minimum number of infected students in such a way
that the infection never spreads to any healthy student?

4. How would your answers change if there were n2 students in an n x n grid?

5. Does it matter if n is even or odd?

6. What geometric property about the set of infected students never changes
as the days pass and the infection spreads?

Please submit your answers to the Pandemic problem as a separate PDF or text
file along with your marriage.py on Gradescope.

7



Administrative stuff
Pair Programming
You will work with a partner for this entire assignment. Please refer to the pair
programming policy in the syllabus. For this first assignment, we have assigned
partners. For future assignments, you may choose your partner.

Lateness
Submissions will not be accepted after the due date, except with the intervention
of the Dean’s Office in the case of serious medical, family, or other personal
crises.

Grading Rubric
Your grade will be based on four components:

• Functional Correctness of Marriage (25%)
• Design and Representation (10%)
• Invariant Documentation (25%)
• Benchmarking and Analysis (15%)
• Pandemic (25%)

Of these, only Functional Correctness will be autograded. Note that we are
asking you to practice defensive programming: if you receive bad input, your
program must exit with error code 1. We reserve the right to test your code
with bad inputs. The idea here is that it is important not only to give the right
answer with good inputs, but to not silently give the wrong answer with bad
inputs. Doing so leads to insecure software.

Design and Representation is our evaluation of the structure of your program,
the choice of representations (how do you represent a knight, for example? How
do you represent a preference list? What cost models are appropriate given
the access patterns?), and the use of appropriate (not excessive) comments. We
will be relatively lenient in the Design and Representation grade on this first
assignment, and progressively more demanding over the course of the semester.

Invariant Documentation is to force you to reason about the running time
of the algorithm, as well as its correctness. Whenever you have a loop in the
body of your algorithm, you should state whatever invariants hold. Consider
what we discussed in class: Initialization, Maintenance, and Termination.
So, at present, this shows up in the form of comments within your source code.

Benchmarking and Analysis will be relatively simple in this assignment. You
should include a PDF in your upload to Gradescope, along with your program.

We provide you with four data files, each with a different value for n. The sizes
are: 10, 100, 1000, and 5000 knights. You must time three runs on each of those

8



inputs, and compute the mean (average) time for each input. Then, plot those
times against the input size. You may use any plotting tool you like; Excel is fine.
Submit a PDF to Gradescope with your plot (along with your code), as well as
an explanation of what you see. Does your plot bear out the O(n2) asymptotic
complexity of Gale-Shapley? Why or why not? If not, can you come up with
any explanation?

Tips and Pitfalls
• It’s possible for a knight and a lady to have the same name. Your imple-

mentation must handle this.
• Be sure to have the knights propose first; if you have the ladies propose to

the knights first, you will still end up with a stable marriage but it won’t
be the one expected by the autograder!

• Don’t overcomplicate this assignment. My solution is 75 lines of code and
involves no classes. I’ve seen solutions with a Knight class, Lady class,
Proposal class, Marriage class. . . all for this one problem. Don’t make
more work for yourself.

9


	Introduction
	Part 1: Perfect Marriage in King Arthur’s Court
	Data File Format and Program Arguments
	Input Specification
	Output Specification


	Part 2: Pandemic!
	Administrative stuff
	Pair Programming
	Lateness
	Grading Rubric
	Tips and Pitfalls


