
CSC 440 Assignment 2: Convex Hull

Out: Tuesday, Feb 7th

Due: Thursday, Feb 16th, by 11:59PM

Introduction
In this assignment, you will be implementing a convex hull algorithm. Specifi-
cally, you must implement the divide-and-conquer algorithm for com-
puting a convex hull.

You will be provided with a zip file on EdStem, convexhull.zip, which contains
a GUI called draw_hull.py. This GUI allows you to click in a window to add
points, click a button to compute and draw the convex hull around those points
using the algorithm that you have implemented. note that the “points” are
not points in the mathematical sense; They have some size to them due to
implementation details of the GUI, so the convex hull actually goes through
the center of each one. You can run this GUI by executing from the terminal $
python draw_hull.py (or $ python3 draw_hull.py).

In the same zip file, there is some starter code in convex_hull.py, which is the
file you will ultimately submit to GradeScope. It contains several functions that
you will find useful (and should not modify). You will have to implement the
compute_hull function which takes as input a list of points and returns only
those points that are on the hull, in clockwise order. Currently, compute_hull
is incorrect; it simply returns the input instead of the actual convex hull.

In this implementation, we represent a point as a 2-tuple of integers (x, y). As
is usually the case with computer graphics, the upper-left of the drawing canvas
is the origin (0, 0), the positive x-axis is directed rightwards, and the positive
y-axis is directed downwards. As a result of this, all coordinates are positive in
this implementation.

You must implement compute_hull and then benchmark its running
time.

You may write any helper functions and/or classes you deem useful; they should
all live in convex_hull.py.

You should also write a separate function for your base case, which should be
the naive algorithm. Call it whenever you need to compute the hull on fewer
than something like 5 or 6 points.

1



You also need to benchmark your code. For this purpose, we have provided some
starter code in benchmarks.py. Report the time taken by your implementation
on inputs of various sizes. Draw a plot and discuss the shapes of any curves that
you see.

I have given you some trickier functions for the trickier geometric tasks, including
a function for sorting a set of points counter-clockwise. Even without those,
what you still have to implement took me roughly 6 hours. Start now.

For this assignment, your solution must be in
Python 3.

Pair Programming
You should work with a partner for this entire assignment. Please refer to the
pair programming policy in the syllabus.

Lateness
Submissions will not be accepted after the due date, except with the intervention
of the Dean’s Office in the case of serious medical, family, or other personal
crises.

Grading Rubric
Your grade will be based on three components:

• Functional Correctness (50%)
• Design and Representation (15%)
• Invariant Documentation (10%)
• Benchmarking and Analysis (25%)

Functional Correctness means passing tests on GradeScope. Remember
that your function compute_hull must return the points in the convex hull in
clockwise order. We have provided you with a minimal test-suite that uses the
hypothesis library for some automated testing. We do not provide any specific
test cases, so you would be wise to write some tests for yourself. You should use
the GUI for small tests, and for building your intuition.

Note: you may modify draw_hull.py in any way you see fit to assist with
debugging. That file need not be submitted to GradeScope.

The file convex_hull.py is what must be submitted to Gradescope, along with
your benchmarking and analysis PDF.

2



Design and Representation is our evaluation of the structure of your program,
the choice of representations (de-emphasized here because some choices have
already been made for you), and the use of appropriate (not excessive) comments.

Invariant Documentation is to get you to reason about the correctness and
running-time of the algorithm.

• Invariant: A statement that can be checked at any point in time. It should
relate to how the algorithm makes progress.

• Initialization: how is the problem set up
• Maintenance: how do I know I’m making progress?
• Termination: how do I know I’m done?
• Usually, these should be closely related.
• Properly documenting invariants can save you a great deal of time thinking

about your algorithm.
• The wise lumberjack takes time to sharpen the axe.

Benchmarking and Analysis is similar to assignment 1. You should include
a PDF in your upload to GradeScope, along with your code.

• You should not use the GUI for benchmarking. The GUI is there for you
to play with, but proper benchmarking should be non-interactive.

• You must also benchmark your base-case (which should actually work for
any reasonably small number of points) and plot its running time.

• Benchmark your implementation on a wide enough set of inputs that you
can plot a meaningful curve.

• Write a brief summary of your benchmarking results. Do they support
your expectation of the asymptotic complexity of this algorithm? Why or
why not? What about the naive (base case) algorithm?

Tips and Pitfalls
• Depending on your system, you may need to install a version of python3

that includes Tk
– Linux (debian derivatives such as Ubuntu): sudo apt-get install

python3-tk
– macOS (with Homebrew): brew install python-tk
– more info here: https://stackoverflow.com/questions/25905540/importerror-

no-module-named-tkinter/25905642#25905642
• You may find it useful to modify draw_hull.py so that it puts something

other than the Rams logo on the canvas. What data might be more helpful
to you?

• One common pitfall is to end up with two points having the same x-
coordinates in two different hulls. The merge algorithm will fail in this
case! Make sure that this never happens when you divide an input for the
recursive calls.

• Remember that the intercept between two parallel lines does not exist. If
you’re seeing divide-by-zero errors, check this first.

3



• Your base case should work for any small-ish number of points. You may
find it’s easier to stop the divide-and-conquer when you reach a set of 5 or
6 points, rather than going all the way down to 3, as this can help avoid
some difficult edge cases.

• If you have a collection of collinear points that are all on the hull, include
them all on the hull, rather than choosing only the extremal points.

4



Property-based testing
This assignment can drive you insane because it can be hard to reproduce a
failing test, and the auto-grader gives you little feedback.

Should you wish to preserve your sanity, use unit tests. I recommend property-
based testing using the hypothesis framework. Why is hypothesis so great?
Because not only will it try to find an input that breaks your solution, but it
will then try to shrink that input to the smallest input it can find that breaks
your solution!

We have provided some basic tests in tests.py. You should first install the
hypothesis library using the command $ pip install hypothesis

Run the tests by executing the command $ python -m unittest discover

5


	Introduction
	For this assignment, your solution must be in Python 3.
	Pair Programming
	Lateness
	Grading Rubric
	Tips and Pitfalls

	Property-based testing

