
CSC 440 Assignment 4: Compression (solo)

Out: Tuesday, March 7th.

Due: Monday, March 27th, by 11:59PM

Introduction
This is a solo assignment

You are going to implement a data compression program in Python using Huffman
codes. We provide a framework and an API. You will fill in several functions.
Your choice of internal representations is up to you.

A stub file, huffman.py, is available on EdStem.

You may, at your choosing, implement this algorithm in another lan-
guage. See the section on Alternative Implementations below

Functions you will write
encode(message: bytes) -> Tuple[str, Dict]:

This takes the message which is a bytes object (really, just a sequence of bytes
that has been read from a file and over which you can iterate). It returns a
tuple (encoded_message, decoder_ring) in which the encoded_message is
the ASCII representation of the Huffman-encoded message (i.e. a string of 1s
and 0s e.g. '10010110') and the decoder_ring is your “decoder ring” needed
to decompress that message.

decode(message: str, decoder_ring: Dict) -> bytes:

This takes the encoded message i.e a string of 1s and 0s and your representation
of the “decoder ring” decoder_ring. It returns a sequence of bytes representing
the decoded message.

Thus,

enc, ring = encode("hello")
print decode(enc, ring)

should output the string 'hello'. Note that the functions encode and decode
are inverses of each other. One undoes what the other does.

1

compress(message: bytes) -> Tuple[array, Dict]:

This takes a bytes object, message, and returns a tuple (compressed,
decoder_ring) in which compressed is an array of bytes containing the
Huffman-coded message in binary and the decoder_ring needed to decompress
the message.

decompress(message: array, decoder_ring: Dict) -> bytes:

This takes message, an array of bytes from a compressed file, and the
decoder_ring needed to decompress it. It returns the bytes object representing
the decompressed message.

Thus,

comp, ring = compress("hello")
print decompress(comp, ring)

should again output the string "hello". Note that the functions compress and
decompress are inverses of each other.

The difference between compress/decompress and encode/decode is that
compress returns a non-human readable, actually compressed binary form of a
message. That is, the result of compress will ultimately be a file on disk that is
smaller than the original input, as long as the input is compressible. Recall
that already-compressed formats such as PNG, MP3, and JPEG are not further
compressible.

Essentially, you will write two versions of a compressor-decompressor loop. The
encode and decode functions are to help you; they do not save space, but
represent each character in the message as a string of 1s and 0s. Once you get
encode and decode to work, compress and decompress should not be too hard.

Write encode and decode first!

Using your compressor and decompressor
In the huffman.py we provide you, we have already handled file-io and command-
line arguments. This way, you can focus on the algorithm to create a working
compression tool.

Once you have compress and decompress working,

$ python huffman.py -c test.txt test.huf

will compress the file test.txt and store it as test.huf, while

$ python huffman.py -d test.huf test2.txt

will decompress test.huf and store it as test2.txt, at which point test.txt
and test2.txt should be identical.

2

You can check for identity between two files with the diff command:

$ diff test.txt test2.txt

If this produces no output on the terminal, then the two files are identical.

How to submit your code
Upload huffman.py to Gradescope.

Leaderboard (for fun)
There is a leaderboard enabled for this assignment, based on your runtime
performance for compressing and then decompressing a large, compressible
binary file (a TIFF image). You can only get on the leaderboard if your solution
is correct. Your grade doesn’t depend on your leaderboard score; it is purely for
fun once you have a correct implementation.

Alternative Implementations
For this assignment, if you use the python framework provided, your solution
must be in Python 3 (not 2.x). However, for this assignment only, you may
choose to use another language. If you choose another language, you do not
need to follow the specific function layout specified above, but you must support
exactly the same command-line interface for compression, decompression,
encoding, and decoding, specified above.

We have infrastructure on the autograder to support submissions in Rust, or in
virtually any other language.

Rust

If you upload a submission in Rust, you must upload a zip file with a specific
directory structure. This will be familiar to those of you who took the Rust version
of CSC 411. Using cargo new --bin huffman will set things up properly:

huffman/
Cargo.toml
src/

main.rs
... (any other .rs files or subdirectories)

Readme.md (optional)

Now, if you have a large target directory in which you’ve been compiling your
program, it will choke Gradescope. I suggest zipping your project with:

zip -r huffman.zip huffman -x "arith/Cargo.lock" "arith/target/**" "arith/.git/**"

3

Other languages (e.g. C, C++)

Currently, Gradescope only has the Clang/Clang++ and gcc/g++ compilers
installed. And, I have not tested this approach (but I’m happy to fix issues that
crop up). Upon request, I could have it install another compiler such as javac
(Java) or ghc (Haskell). It should also be possible to use non-statically-compiled
languages such as Lua or Ruby (again, installed upon request). The key is to
use Make.

You must have a Makefile at the root of your huffman directory, and this
Makefile must produce an executable file called huffman at the root of the
huffman directory. If you use C, for instance, you would have gcc or clang emit
a binary called huffman (e.g. gcc huffman.c -o huffman).

If you use a non-compiled language such as Ruby, your Makefile must still result
in an executable file called huffman at the root of the huffman directory. So
for instance, your Makefile might simply rename a huffman.rb file to huffman,
chmod 755 huffman, and ensure that it has a #! line like #!/usr/bin/env
ruby

The directory structure is mostly up to you, but for instance, consider:

huffman/
Makefile (required)
src/

huffman.c

and after compilation, this would look like:

huffman/
Makefile
huffman
src/

huffman.c

Again, zip this up similarly to the example for Rust above, but you don’t need
those specific -x flags.

This is a SOLO assignment!
You may not work with a partner. You may not show your code to any other
classmate, or anyone who is not a member of the course staff (instructor or TAs).
You also may not allow your code to be seen by anyone who is not a member of
the course staff. Please see the syllabus section on Academic Integrity, or ask
the instructor if you have any questions.

You MAY discuss conceptual issues, your understanding of the algorithm, and
even choices of data structures and representations with your classmates. But
you may not share code.

4

Lateness
Submissions will not be accepted after the due date, except with the intervention
of the Dean’s Office in the case of serious medical, family, or other personal
crises.

Grading Rubric
Your grade will be based on two components:

• Functional Correctness (50%)
– This includes a requirement that your compression actually reduce

the size of a (fairly large) file.
– This means you have to get the bitpacking implemented, not just

produce an ASCII string of 1s and 0s.
• Design and Representation (50%)

– Documentation of useful invariants counts as a moderate part of this
– But focus on the correctness of your compression; greedy algorithms

are easy to prove termination.
– Choice of proper data structures based on their cost models

For this assignment, you get a bit of a break from worrying about program
inputs, since you are writing a function that conforms to an API. However, if
your implementation does not respect the API we have specified, you will receive
no credit for functional correctness.

Design and Representation is our evaluation of the structure of your program,
the choice of representations. How do you represent your tree? What data
structure(s) do you use to build the Huffman tree?

Remember, the leaderboard is just for fun; your grade does not depend on your
leaderboard rank.

Hints
Bit manipulations in Python

• 1001 is just a decimal number that happens to be ones and zeros

• '1001' is a string. Useful for printing (it’s what encode and decode deal
with) but not for compression.

• So how do we build an arbitrary binary value from a string of 1s and 0s?

byte_str = ‘1010’ byte = f’{byte_str:08b}’

Arrays
Using the array library in Python, you can import the array data structure:

5

from array import array

You can create an empty array of bytes using this command:

byte_array = array('B')

The 'B' tells Python to expect bytes to be put into this array. We recommend
that you read about other formats in the documentation for array.array and
use the one that you think will work best.

You can then append to the array of bytes:

byte_array.append(item)

6

The item being appended but be an integer that can fit in one byte:

byte_array.append(42) # valid
byte_array.append(-19) # not valid
byte_array.append(440) # not valid

Data structures
• When building a Huffman tree, we need to repeatedly get the smallest

(least frequent) item from the frequency table.
• What data structure will efficiently support the operations needed?
• Ask yourself, or benchmark to check: will this dominate the runtime on a

large input?
– Remember, you can figure out where the time is spent with cProfile

• Your internal representation of a Huffman tree is entirely up to you. Don’t
overcomplicate it.

• When it comes to clever data structures and performance tuning, go where
the money is. Remember, there’s always the possibility that

Zero-padding
When you compress your encoded message, it will result in an integer number
of bytes. However, the underlying message may not completely fill those bytes
i.e. when compressed into a sequence of bits, the number of bits may not be
a multiple of 8. So, your compressed message need some zero-padding. Your
decompressor will need to somehow know about these extra zeros, so they aren’t
erroneously decoded.

Reminder
This is a solo project. No partners.

7

	Introduction
	Functions you will write
	Using your compressor and decompressor
	How to submit your code

	Leaderboard (for fun)
	Alternative Implementations
	Rust
	Other languages (e.g. C, C++)

	This is a SOLO assignment!
	Lateness
	Grading Rubric
	Hints
	Bit manipulations in Python
	Arrays
	Data structures
	Zero-padding

	Reminder

