CSC 440
Design and Analysis of Algorithms

Prof. Noah M. Daniels

ndaniels@cs.uri.edu
http://www.cs.uri.edu/~ndaniels/
Tyler 250

Changes to course policies or schedule may occur in response to unforeseen circumstances. I will
notify the class of any changes immediately.

Course Description: Algorithm design and analysis, advanced data structures, computational
complexity. Sorting, searching including hashing and balanced trees, string pattern matching, poly-
nomial and matrix calculations, graph and network algorithms, NP-completeness and intractability.
Algorithmic techniques including dynamic programming, divide and conquer, and greedy algo-
rithms.

Prerequisite(s): CSC 340.

Text: Algorithms

Authors: Dasgupta, Papadimitriou, & Vazirani; ISBN-13: 978-0073523408

Course Objectives:
At the completion of this course, students will be able to:

Choose appropriate algorithms to solve common problems

Design new algorithms to solve new problems

Determine the theoretical efficiency of those algorithms

Implement those algorithms in the programming language of their choice
Benchmark and present the actual efficiency of those algorithms

Gl o=

http://www.cs.uri.edu/~ndaniels/

Grade Distribution:
Class Participation 10%

Projects 70%
Final Exam 20%

Letter Grade Distribution:

>= 93.00 A 80.00 - 82.99 B- | 67.00-69.99 D+
90.00 - 92.99 A- | 77.00-79.99 C+ | 63.00-66.99 D
87.00 - 89.99 B+ | 73.00 - 76.99 C 60.00 - 62.99 D-
83.00 - 86.99 B 70.00 - 72.99 C- | <=59.99 F

Course Policies:
e Attendance

— You are expected to attend class. I do not take attendance per se, but in-class exercises
will not be announced ahead of time.

e Grades

— Grades in the C range represent performance that meets expectations; Grades in the
B range represent performance that is substantially better than the expectations;
Grades in the A range represent work that is excellent.

— Grades will be maintained on Gradescope (numerically). Students are responsible for
tracking their progress by referring to the online gradebook.

— Class participation is very specific: there will be frequent in-class exercises, done in
groups of 4-5 students. Participation in these exercises is expected. If you participate in
at least 75% of these exercises, you will receive 100% of the Class Participation grade.
Otherwise you will receive zero for Class Participation.

e Assignments

Programming assignments should be done in pairs.

Written assignments (e.g. proofs and problem sets) must be done individually.

— If you are ever unclear about whether an assignment should be done by yourself or with
a partner, please ask!

All assignments will be submitted and graded through Gradescope. More information
on Gradescope will be included with Assignment 0.

¢ Exams

— There is a non-traditional one-on-one final exam. You will be given a list of questions in
advance, and expected to prepare answers for all of them. You get to pick one question
to answer, and I get to pick one question for you to answer; you can reject my choice
once (you have to answer my second choice). This will be conducted over Zoom, and
will take approximately 10 minutes.

Students with Disabilities

Any student with a documented disability is welcome to contact me as early in the semester as
possible so that we may arrange reasonable accommodations. As part of this process, please be in
touch with Disability Services for Students Office at 302 Memorial Union, Phone 401-874-2098.

Academic Honesty Policy:
All submitted work must be your own. If you consult other sources (class readings, articles or
books from the library, articles available through internet databases, or websites) these MUST
be properly documented, or you will be charged with plagiarism and will receive an F for the
paper. In some cases, this may result in a failure of the course as well. In addition, the charge of
academic dishonesty will go on your record in the Office of Student Life. If you have any doubt
about what constitutes plagiarism, visit the following websites: the URI Student Handbook,
and Sections 8.27.10 — 8.27.21 of the University Manual (web.uri.edu/manual/).
Some programming assignments will be done in pairs. For the purposes of pair
programming assignments, “your own” means that the work is the product of you
and your partner, together. Which assignments are pair assignments will be clearly
spelled out in each assignment handout.

Attendance
Students are expected to attend class and classroom activities. Occasionally, stu-
dents may miss class activities due to illness, severe weather, or sanctioned Univer-
sity events. If ill, students should not attend class and should seek medical atten-
tion especially if they have a communicable disease such as influenza (flu). Students
should not attend class when the University announces classes are cancelled due to
severe weather. Also, it is the policy of the University of Rhode Island to accord
students, on an individual basis, the opportunity to observe their traditional reli-
gious holidays. Students desiring to observe a holiday of special importance must
inform each instructor and discuss options for missed classes or examinations. See
Sections 8.51.11 — 8.51.14 of the University Manual for policy regarding make-up
of missed class or examinations.
I do not specifically take attendance. However, 10% of your grade is determined
by class participation, which includes participating in group exercises. If you do
not participate in at least 75% of group exercises, you will receive a zero for class
participation.

Pair Programming:
Professional engineering and computer science are collaborative endeavors. And yet,
while you are a student, you earn an individual grade. To balance these competing
concerns, we support

e Wide but shallow collaboration when discussing ideas and problems
e Deep but narrow collaboration when creating and debugging computer programs

Wide but shallow collaboration means that while you are striving to understand a
problem and discover possible paths to its solution, you are encouraged to discuss
the problem and your ideas with friends and colleagues—you will do much better
in the course, and at URI, if you find people with whom you regularly discuss
problems. When the time comes to write code, however, group discussions are no
longer appropriate.

Deep but narrow collaboration means pair programming. In pair programming, you
work with a partner under the following constraints:

The

When work is being done on the program, both partners are present at the
computer. One partner holds the keyboard; the other watches the screen. Both
partners talk, and the keyboard should change hands occasionally.

You submit a single program (or design) under both your names. That work gets
one grade, which you both receive.

following policies are essential:

Every source of assistance must be acknowledged in writing. This rule applies to
discussions with classmates or course staff as well as assistance you might find
in the library or on the web. There is never a penalty for seeking help with a
problem, but help must be acknowledged.

If circumstances, such as scheduling difficulties, make it impossible for you to
work as part of a pair, you may ask the course staff for permission to divide an
assignment into parts and to do some parts as a member of a pair and other
parts as an individual. Such parts must appear in different files, and each file
must be clearly identified as the work of an individual or the work of a pair.
Work done jointly by the pair should be submitted by both members of the pair.
Files containing joint work must be identical. If you as an individual modify
a file containing joint work, and you submit the modified file, that act will be
considered a violation of academic integrity.

It is never acceptable to divide an assignment into parts and have some parts
done by one partner and other parts done by the other. Submitting work done
by someone else as your own will be considered an egregious violation of academic
integrity. Submitting individual work as the product of pair programming is also
a violation of academic integrity.

If your partner disappears in mid-project, the correct procedure is submit the
work done in partnership at that point, even if it is incomplete or broken. You
may then follow up with an additional submission of whatever you complete on
your own.

Unless you are working with another student as part of a programming pair, it is
not acceptable to permit that student to see any part of your program, and it is
not acceptable to permit yourself to see any part of that other student’s program.
In particular, you may not test or debug another student’s code, nor may you
have another student test or debug your code. (If you can’t get code to work,
consult a TA or the instructor.) Using another’s code in any form or writing
code for use by another will be considered a violation of academic integrity.

Never, ever share your Linux account password (or private key) with another
individual (whether student, faculty, or staff). Sharing your password with an-
other student will be considered a violation of academic integrity. If you wish
to transfer code between accounts, sending a git bundle via scp or email is one
good approach. You are encouraged to submit general programming questions
to online forums such as Stackoverflow. Questions about particular homework
problems must never be posted online—send mail to the course staff.

Finally, be aware that pair programming is a privilege, not a right. If you foul up
and don’t fix it, I may revoke your pair-programming privileges. Fouling up consists
of any of the following unacceptable behavior:

¢ Repeatedly failing to keep appointments with your partner
e Lying to your partner about what you have done
e Violating academic integrity

e Other similarly egregious offenses

If I find it necessary to revoke your pair-programming privileges and you believe I
have done so unfairly, you may appeal to the department chair.

Tentative Course Outline:

The weekly coverage might change as it depends on the progress of the class. However,
you must keep up with the reading assignments. The reading assignment listed for a
given class period should be completed by that class period (hence, no reading due
for the first lecture).

Date

Content

Administrivia; syllabus; models of computation

Jan 23
e Assignment 0 out
e Assignment 0 due
Jan 25 e Assignment 1 (perfect marriage) out
o Invariants, Bipartite Matching
e Reading assignment: DPV Chapter 1
Jan 30 e Sorting 1
e Big O notation, Analysis
e Al due
Feb 1 e Sorting 2, Divide and Conquer 1
e Reading: DPV Ch 2
e Divide-and-conquer 2: median-finding, convex hull
Feb 6 e Assignment 1 due
e Assignment 2 (Convex Hull) out
Feb 8 e Divide-and-conquer 3
e DFT, FFT, polys
Feb 13 e Divide and conquer 4
e van Emde Boas trees
e Graphs 1
Feb 15 e Reading: DPV Ch. 3
e Assignment 2 due
e Assignment 3 (Rubik’s Cube) out
e Graphs 2
Feb 20 e Rubik’s cube solving
e Reading: DPV Ch. 4
e Graphs 3
Feb 22 e Dijkstra
[)
Feb 27 e Graphs 4: Bellman-Ford
e Assignment 3 due
e Greedy Algorithms 1: Exact Change
Feb 29 e Assignment 4 (Compression) out
e Reading: DPV Ch. 5
Mar 5 e Greedy Algorithms 2: Huffman Coding
Mar 7 e Assignment 4 due
e Greedy Algorithms 3: Minimum Spanning Trees
Mar 12 e Spring Break!
Mar 14 e Spring Break!
Mar 19 e Dynamic Programming 1

Fibonacci

Week

Content

e Dynamic Programming 2: Knapsack, Shortest Paths

Mar 21 e Reading: DPV Ch. 6
e Assignment 5 (Seam Carving) out
Mar 26 e Dynamic Programming 3: Sequence Alignment
Mar 28 o Network Flow 1
e Network Flow 2
Apr 2 e Assignment 5 due
e Assignment 6 (Network Flow) out
Apr 4 o Network Flow 3
e Complexity 1
e Halting Problem, Undecidability, Computability, Polynomial Time Hierarchy
Apr 11 e Reading assignment: Scooping the Loop Snooper
e Reading assignment: DPV Ch. 8
e Assignment 6 due
e Complexity 2
Apr 16 e Hardness, Completeness, Reductions, Convex Hull
e Reading assignment: DPV Ch. 9
e Assignment 7 out
Apr 18 e Complexity 3
e 3-D matching, compiler optimization
Apr 23 o Complexity 4
Randomized Algorithms
Apr 25 Quantum Computing

Last day of class
Assignment 7 due

